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The results of this thesis demonstrate that direct numerical simulation can predict

sound generation in unsteady aerodynamic flows containing shock waves. Shock

waves can be significant sources of sound in high speed jet flows, on helicopter

blades, and in supersonic combustion inlets. Direct computation of sound permits

the prediction of noise levels in the preliminary design stage and can be used

as a tool to focus experimental studies, thereby reducing cost and increasing the

probability of a successfully quiet product in less time.

Direct simulation of sound generation in shocked flows is challenging because of

the disparity in amplitude between the acoustic waves and shocks. These challenges

are met by the implementation of a high-order accurate Essentially Non-Oscillatory

(ENO) scheme which maintains high accuracy in smooth regions of the flow to

minimize numerical dissipation of the acoustic waves while maintaining sufficient

numerical dissipation at the shock for stability.

This thesis reveals and investigates two mechanisms fundamental to sound gen-

eration by shocked flows: shock motion and shock deformation. Shock motion is

modeled by the interaction of a sound wave with a shock. During the interaction,



the shock wave begins to move and the sound pressure is amplified as the wave

passes through the shock. The numerical approach presented in this thesis is vali-

dated by the comparison of results obtained in a quasi-one dimensional simulation

with linear theory. Analysis of the perturbation energy demonstrated for the first

time that acoustic energy is generated by the interaction.

Shock deformation is investigated by the numerical simulation of a ring vor-

tex interacting with a shock. This interaction models the passage of turbulent

structures through the shock wave. The simulation demonstrates that both acous-

tic waves and contact surfaces are generated downstream during the interaction.

Analysis demonstrates that the acoustic wave spreads cylindrically, that the sound

intensity is highly directional, and that the sound pressure level increases signif-

icantly with increasing shock strength. The effect of shock strength on sound

pressure level is consistent with experimental observations of shock noise, indicat-

ing that the interaction of a ring vortex with a shock wave correctly models a

dominant mechanism of shock noise generation.
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It is good to have an end to a journey;

but it is the journey that matters, in the end.

Ursula L. LeGuin

iv



Acknowledgements

I would like to acknowledge NASA Langley Research Center for providing the

opportunity for me to pursue doctoral studies at an outstanding institution. Special

appreciation is extended to Dr. Jim Thomas, head of the Aerodynamics and

Acoustics Methods Branch, and Jack Preisser, head of the Aeroacoustics Branch,

for their support in this endeavor.

I am pleased to specifically acknowledge several exemplary individuals for their

technical contributions to this research. Professor Dave Caughey supervised this

research and provided innumerable suggestions and comments. His technical in-

sights and willingness to supervise this work long distance are greatly appreciated.

Dr. Jay Hardin served as my mentor at Langley and graciously provided tech-

nical advice in aeroacoustics, mathematics and time series analysis. Dr. Jack

Seiner provided many insightful discussions on the topic of jet noise. Dr. Jay

Casper acquainted me with his finite-volume implementation of the essentially

non-oscillatory (ENO) scheme. Dr. Feri Farassat introduced me to generalized

functions and reviewed the analysis herein. Professor A1 George and Professor Sid

Leibovich reviewed this thesis and served on my committee.

v



Table of Contents

1 Introduction

Bibliography 7

2 Modeling of Sound Generating Mechanisms in a Supersonic Jet
2.1

2.2

2.3

2.4

2.5

8

Introduction ............................... 8

Models .................................. 12

Sound Generation by Shock Motion: Evaluation of LighthiU's Source

Term and Far Field Sound ....................... 14

2.3.1 Background ........................... 14

2.3.2 Source Terms .......................... 16

Evaluation of Acoustic Pressure .................... 26

2.4.1 Monopole ............................ 27

2.4.2 Dipole .............................. 29

2.4.3 Quadrupole ........................... 31

Conclusions ............................... 36

Bibliography 38

3

3.1

3.2

Numerical Methods and Issues 39

Introduction .............................. 39

Algorithms ................................ 41

3.2.1 MacCormack's Scheme ..................... 41

3.2.2 ENO Scheme .......................... 43

3.2.3 Stencil Biasing Parameters ................... 44

3.2.4 ENO Flux Computation .................... 46

3.3 Numerical Error Generated by a Slowly Moving Shock in a Duct . 48
3.3.1 Introduction ........................... 48

3.3.2 Analysis: Exact Solution .................... 50

3.3.3 Results .............................. 51

3.3.4 Summary ............................ 64

3.4 Economics of Higher-Order Schemes .................. 65

3.5 Extracting Acoustics from Aerodynamic Flow ............ 67

vi



3.5.1 Acoustics Defined ........................ 67

3.5.2 Requirements for Acoustic Calculations ............ 68

Bibliography 70

4 Interaction of Sound with a Shock Wave 73

4.1 Introduction ............................... 73

4.2 Analysis ................................. 74

4.2.1 Linear Theory .......................... 74

4.2.2 Riemann Analysis ........................ 75

4.3 Model Problem ............................. 80

4.3.1 Governing Equations ...................... 80

4.3.2 Nozzle Shape .......................... 80

4.3.3 Governing Equations and Boundary Conditions ....... 81

4.3.4 Algorithms ........................... 82

4.4 Results .................................. 83

4.4.1 Unsteady Calculations ..................... 83

4.4.2 Effect of Mach Number ..................... 85

4.4.3 Comparison of Numerical Results with Linear Theory 87

4.4.4 Energy Analysis ......................... 88

4.5 Concluding Remarks .......................... 94

Bibliography 95

5 Interaction of a Vortex Ring with a Shock Wave 96

5.1 Introduction ............................... 96

5.2 Model .................................. 98

5.2.1 Overview ............................ 98

5.2.2 Geometry ............................ 99

5.2.3 Governing Equations ...................... 100

5.2.4 Boundary Conditions ...................... 101

5.2.5 Solution Procedure ....................... 101

5.2.6 Vortex Model .......................... 102

5.2.7 Vortex Parameter Modeling .................. 102

5.2.8 Vortex Preservation Study ................... 103

5.2.9 Computational Grid ...................... 104

5.3 Typical Interaction-Counterclockwise Vortex ............. 106

5.3.1 Overview ............................ 106

5.3.2 Pressure ............................. 107

5.3.3 Density ............................. 113

5.3.4 Vorticity ............................. 117

5.3.5 Velocity ............................. 119

5.3.6 Entropy ............................. 119

vii



5.3.7

5.3.8

5.3.9

5.3.10

5.3.11

5.3.12

Discussion ............................ 122

Shock Dynamics ........................ 123

Frequency Analysis ....................... 126

Sound Intensity Level ...................... 130

Effect of Mach Number on Directivity ............ 138

Effect of Flow Mach Number on Sound Pressure Level . . 138

5.4 Strong Interaction ............................ 142

5.5 Typical Interaction-Clockwise Vortex ................. 147

5.6 Effect of Vortex Core Size ....................... 149

5.7 Conclusions ............................... 153

Bibliography 156

6 Conclusions 159

A Derivation of Unsteady Shock Jump Relations 164

Bibliography 169

B Equations for the Velocity and Pressure of a Ring Vortex 170

B.1 Velocity ................................. 170

B.I.1 Outside the Core ........................ 170

B.1.2 Inside the Core ......................... 172

B.2 Pressure ................................. 173

B.2.1 Outside the Core ........................ 173

B.2.2 Inside the Core ......................... 174

B.3 Remarks ................................. 174

Bibliography 176

viii



List of Tables

4.1 Mach slopes and corresponding range of pre-shock Mach number. 81

4.2 Pre-shock Mach number and minimum ceils per wavelength for the

calculations presented in this paper .................. 87

ix



List of Figures

1.1

2.9

2.10

2.11

Some well-known equations of fluid mechanics. Note that the acous-

tic wave equation is a special case of the Navier Stokes equations. 4

2.1 Schlieren photograph of an underexpanded jet ............ 9

2.2 Spectrum of a typical supersonic underexpanded jet ......... 11

2.3 Fundamental sound generating mechanisms of supersonic jet flow. 14

2.4 Schematic of shock oscillation used in the determination of Lighthill's

source term ............................... 17

2.5 Normalized monopole component of the Lighthill source term sound

generated by a sinusoidally oscillating shock ............. 20

2.6 Normalized strength of monopole component of the LighthiLl source

term for a sinusoidally oscillating shock. Wavenumber k is a func-

tion of upstream Mach number and sound speed .......... 22

2.7 Normalized strength of dipole component of the Lighthill source

term for a sinusoidaUy oscillating shock ............... 24

2.8 Schematic of shock disk in plug flow. Flow variables are functions

of position along the axial coordinate. The shock is located at the

center of the volume .......................... 27

Coordinate system used in evaluation of surface integrals ...... 28

Root-mean-square far field pressure of the monopole, dipole, and

quadrupole terms in the Lighthill analysis of shock noise. Results

for three frequencies are shown .................... 33

Root-mean-square far field pressure of the monopole, dipole, and

quadrupole terms in the Lighthill analysis of shock noise. Results

for three observer angles are shown .................. 35

3.1 Pressure and Entropy as Functions of Distance along Duct. Shock

Speed = .05; Shock Pressure Ratio = 10.33. Dashed line represents

pressure. Solid line represents entropy ................ 53

3.2 Entropy as a Function of Distance along Duct and Shock Speed.

Shock Speeds = .02, .05, 0.15; Shock Pressure Ratio = 10.33 .... 55

3.3 Pressure as a Function of Distance along Duct and Shock Speed.

Shock Speeds = .02, .05, 0.15; Shock Pressure Ratio = 10.33 .... 55



3.10

3.11

3.4 Effectof ShockVelocityonSpuriousEntropy. Threeshockstrengths
areshown................................ 57

3.5 Effectof ShockVelocityon SpuriousPressure.Threeshockstrengths
areshown................................ 58

3.6 Effect of ShockVelocity on SpuriousPressure.The error is mea-
suredapproximately50cellsdownstreamof the shock.Threeshock
strengthsareshown.......................... 58

3.7 Effect of Stencil BiasingParameterand Threshold Parameteron
Stencil. White representsa downwindstencil;Black representsan
upwind stencil;Grayrepresentsacenteredstencil. Case(a):Biasing
on, Threshold on; Case(b): Biasing on, Threshold off; Case(c):
Biasingoff, Thresholdoff; Case(d)Biasingoff, Thresholdon. 256
Cells................................... 60

3.8 Entropy asa Functionof Duct Distancefor VariousCombinationsof
Biasingand ThresholdParameters.Case(a): Biasingon, Thresh-
old on; Case(b): Biasingon, Thresholdoff; Case(c): Biasingoff,
Thresholdoff; Case(d)Biasingoff, Thresholdon. 256Cells..... 62

3.9 EntropyasaFunctionof Duct Distancefor VariousCombinationsof
Biasingand ThresholdParameters.Case(a):Biasingon, Thresh-
old on; Case(b): Biasingon, Thresholdoff; Case(c): Biasing off,
Thresholdoff; Case(d)Biasingoff, Thresholdon. 1024Cells. . . 62
Entropy asa function of DistanceAlong Duct Lengthfor Roeand
OsherFlux Solvers.Biasingon, Thresholdoff............ 63
ComputationalTime per Time StepasasFunction of L1 Error for

2nd, 3rd, and 4th Order ENO Schemes ................ 66

4.1 Ratios of Static and Perturbation Pressures as Functions of Pre-

Shock Mach Number .......................... 76

4.2 Diagram of the quasi-steady Riemann problem analysis for sound-

shock interaction. Bold hne represents shock. Dashed hne repre-

sents entropy wave. Lines between states 3 and 4 represent acoustic
wave ................................... 77

4.3 Pressure Perturbation as Function of Upstream Mach Number. . . 77

4.4 Perturbation Ratios as a Function of Upstream Mach Number. . . 78

4.5 Shock Speed Number as a Function of Upstream Mach Number.

SoLd hnes correspond to e = 1.0;Long dashed line corresponds to

e = 10-1; Dashed hne corresponds to e = 10 -2 . Dots on hnes

represent results obtained from Riemann analysis .......... 79

4.6 Nozzle Geometry for Mach Slope =1 ................. 80

4.7 Pressure, Density and Velocity Perturbations Along Nozzle Length. 84

4.8 Several Snapshots in Time of Pressure Perturbation Along Nozzle.

e = 10 -s, M1 = 1.58 .......................... 86

xi



4.9

4.10

4.11

4.12

4.13

5.1
5.2
5.3
5.4

5.5

5.6

5.7
5.8

5.9

5.10

5.11

SeveralSnapshotsin Time of PressurePerturbation Along Nozzle.
e = 10 -s, M1 = 2.36 .......................... 86

Pressure Perturbation Ratio as a Function of Pre-Shock Mach Num-

ber .................................... 88

Disturbance acoustic energy as a function of space time. Pre-shock

Mach number is 3, disturbance acoustic amplitude = 0.1,512 cells

distributed along duct length ..................... 91

Disturbance entropy energy as a function of space time. Pre-shock

Mach number is 3, disturbance acoustic amplitude = 0.1, 512 cells

distributed along duct length ..................... 92

Disturbance energy source as a function of space time. Pre-shock

Mach number is 3, disturbance acoustic amplitude = 0.1,512 cells

distributed along duct length ..................... 93

Vortex Ring - Shock Interaction .................... 98

Vortex Ring - Shock Interaction .................... 100

Standard grid used in calculations. Only every 15th cell is shown. 105

Contours of pressure perturbation downstream of the shock at T =

0, T = 8, and T = 50 .......................... 108

Position of the peak pressure perturbation (in core radii from the

vortex filament) as a function of time (in periods). The slope of the

curve is the sound speed downstream of the shock .......... 109

Pressure perturbations along radii extending from the vortex core

at x = 30. Radii are separated by 10 degree increments ....... 110

Pressure perturbations downstream of the shock at T = 50 ..... 111

Decay rate of the acoustic pressure. The product of the square-root

of distance traveled and the peak pressure magnitude is shown to

asymptote to a constant value, indicating that the acoustic wave

spreads cylindrically .......................... 112

Pressure contours downstream for a time T = 50 (left figure) and

T = 66 (right figure). The vortex is located at approximately

twenty-three core radii downstream of the shock for both cases.

The difference in the solutions is a result of the initial placement of

the vortex relative to the shock. In the figure on the left, the vortex

is initially seven core radii away from the shock. In the figure on

the right, the vortex is initially twenty three core radii away from
the shock ................................ 114

Mach-Zehnder interferogram of sound wave and contact surfaces

generated shock-vortex interaction. (From [3]) ........... 116

Contours of density perturbation downstream of the shock at T =

0,T = 8, and T = 50 .......................... 117

xii



5.12

5.13

5.14

5.15

5.16

5.17

5.18
5.19
5.20

5.21

5.22

5.23

5.24

5.25

5.26

Contoursof densityperturbation downstreamof the shockat T =

50 .................................... 118

Contours of vorticity perturbation downstream of the shock at T =

8 and T = 50 .............................. 119

Contours of vorticity perturbation in the region immediately sur-

rounding the vortex filament at T = 50 ................ 120

Contours of axial velocity perturbation at T = 0, T = 8, and
T = 50 ................................. 120

Contours of axial velocity perturbation at T = 50. The range of

the contour levels has been reduced to show the interesting velocity

features ................................. 121

Contours of radial velocity perturbation downstream of the shock

at T=0, T=8, andT=50 ..................... 121

Contours of entropy perturbation at T = 8 and and T = 50 .... 122

Shock displacement as a function of space-time ........... 123

Shock displacement as a function of radial distance (on the vertical

axis) for T = 1, T = 6, and T = 10 through T = 50 in time

increments of 10. Positive displacement refers to downstream shock

displacement .............................. 125

Shock displacement and density and pressure perturbations as func-

tions of radial distance (on the vertical axis) for T = 50. The den-

sity and pressure perturbations are obtained slightly downstream

of the shock (x = 7.02) ......................... 127

Sound pressure level (SPL) pressure as a function of dimensionless

frequency. Distance from the source is 6.0811 core radii. Angle

from horizontal is 45 degrees ..................... 131

Sound pressure level (SPL) as a function of dimensionless frequency.

Distance from the source is 11.74 core radii. Angle from horizontal

is 45 degrees .............................. 131

Sound pressure level (SPL) as a function of dimensionless frequency.

Distance from the source is 23.1 core radii. Angle from horizontal

is 45 degrees .............................. 132

Sound pressure level (SPL) as a function of distance from the inter-

action point. This data is taken along a line at 45 degrees from the

point where a horizontal line passing through the vortex filament

(r=125) passes through the undisturbed shock ............ 132

Sound Intensity Level. Ir is radial component. Iz is axial compo-
nent ................................... 136

xiii



5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35
5.36

5.37

SoundIntensity Level. Icz is the axial component of sound intensity

level using the classical definition of sound intensity. Note that in

this definition, the primary directivity of the sound wave is along

the shock wave and downstream at angles of approximately =t=50

degrees ................................. 137

Directivity Angles as a Function of Upstream Mach Number. The

upper curve corresponds to the intensity lobe closest to the shock

above the vortex filament; the second curve from the top corre-

sponds to the intensity lobe to the far right of the shock and above

the filament; the third hne from the top corresponds to the inten-

sity lobe to the far right of the shock and below the vortex filament

position, and the bottom curve corresponds to the intensity lobe

closest to the shock and below the vortex filament ......... 139

Sound pressure level (SPL) as a function fl, where j3 is a measure

of upstream Mach number ....................... 141

Contours of pressure perturbation downstream of the shock at T =

50. Vortex rotation is in a counter-clockwise sense. Vortex strength

is l0 = 5.5 ................................ 143

Pressure perturbations along radii extending from the vortex core

at x = 30. Radii are separated by 10 degree increments. Vortex

strength is F -- 5.5 ........................... 144

Pressure perturbations as functions of axial position at T = 50.

Dashed curve represents pressure perturbation along the line r =

98, below the vortex filament. Solid curve represents pressure per-

turbation along the line r = 158, above the vortex filament ..... 145

Contours of density perturbation downstream of the shock at T =

50. Vortex rotation is in a counter-clockwise sense. Vortex strength
is F = 5.5 ................................ 146

Contours of pressure perturbation downstream of the shock at T =
50. Vortex rotation is in a clockwise sense .............. 147

Shock displacement as a function of space-time ........... 149

Shock displacement as a function of radial distance (on the vertical

axis) for T = 1, T = 6, and T = 10 through T = 50 in increments of

10 for a clock-wise rotating vortex, core at • = 30, y = 125. Results

are shown for radii at +40, +50 and +60 degrees. The solid lines

represent solutions for the clock-wise rotating vortex. The dashed

hnes represent solutions for the CCW rotating vortex ........ 150

Pressure perturbations along radii extending from the vortex core

at _c = 30, y = 125. Results are shown for radii at +40, +50 and

+60 degrees. The sohd lines represent solutions for the clock-wise

rotating vortex. The dashed lines represent solutions for the CCW

rotating vortex ............................. 151

xiv



5.38

A.1

B.1

B.2

Contours of pressure perturbation for a case where the strength of

the vortex is F = 0.75, the Mach number upstream of the shock is

M = 1.5, and the ratio of the vortex core radius to the ring radius
is 1_T6.................................. 152

Schematic of a discontinuous surface ................. 165

Ring vortex moving at a velocity U + V with respect to a fixed

coordinate system (_,r) ........................ 171

Profile of the pressure distribution of a counter-clockwise rotating

ring vortex of strength F = 0.75. The figure to the right shows the

pressure distribution over a smaller range of pressure perturbation

to highlight the asymmetry in the pressure profile above and below
the filament ............................... 175

XV



Chapter 1

Introduction

The motivation behind this research is to establish a better understanding of the

physical nature of sound generation in shocked flows. Knowledge gained by in-

creased understanding of the primary mechanisms involved in shock noise genera-

tion has application to a variety of real aerodynamic problems. In helicopter and

tilt-rotor applications, shock waves may form on the blade surfaces, and vortices

from a preceding blade may interact with the shock resulting in impulsive noise.

In supersonic engine inlets, combustion instabilities may result in shock oscillation

leading to what is commonly known as "buzz". Even subsonic transport aircraft

often operate at conditions where the flow over the wing is transonic, and un-

steadiness in the flow over the wing can cause the shock to oscillate and generate

noise.

The primary application in mind during the course of this research is the sound

generation in supersonic jets. When jet engines operate at supercritical nozzle

pressure ratios, shocks may form in the jet plume and turbulence interacting with

the shock waves generates high amplitude, broad-band noise, typically known as



"broadbandshocknoise" or "shock-associated noise". The expected shock noise

during the climb-to-cruise operating condition of a supersonic civil transport may

ruin its chance of ever being put in production. Shock noise is an important

design issue because of the effects on community noise, aircraft interior noise, and

structural fatigue.

Research towards the understanding of noise generation in jet flows has been

ongoing for over 40 years. Morley [1] in an investigation of sound intensity in the

far field of turbulent jets, showed that the sound power is proportional to about

the eighth power of the jet velocity. Lighthill [2] in his pioneering work on jet noise

theory, provided a theoretical basis for the eighth power law noticed by Morley,

and provided the basis for an understanding of other jet noise phenomena such

as convective amplification. Lilley [5] provides a nice review of classical jet noise

theory and the related experiments. There are two recent review papers specific

to noise generation in supersonic jets which summarize significant contributions

to the understanding of jet noise. The first, written from an experimentalist's

perspective, is the review article by Seiner [3]. The most recent, written from a

theoretician's perspective, is the article by Tam [4]. The complicated nature of

the supersonic jet flow makes development of a comprehensive theory difficult, and

therefore the theories currently available for the prediction of shock noise in jets

are largely empirical in nature.

The approach taken in this research is to compute directly the sound generated

by shock waves in supersonic jets. Advances in computer hardware resulting in

more computational speed, affordable memory, and parallel architectures combined

with advances in software resulting in more efficient, accurate algorithms and better



networking have made this type of approach currently feasible for relatively simple,

two dimensional problems.

Direct computation of aerodynamically generated sound makes sense because

sound is inherently a component of a fluid flow field. Therefore, the basic equations

governing sound are the same as those governing fluid flow. For Newtonian fluid

flows, these equations are the Navier Stokes equations, or, when viscous effects can

be neglected, the Euler equations. As can be seen by Figure 1.1, the acoustic por-

tion of a fluid flow field consists of small perturbations on an inviscid, compressible

flow. The generation of sound waves, however, often involves viscous, nonlinear

effects. Thus, an advantage of performing a direct simulation of the fully nonlinear

equations, as opposed to using traditional acoustic methods which require that in-

formation along some surface is provided through another means, (e.g. experiment

or a separate computation), is that both the sound generation and propagation are

computed in the same analysis.

If current trends in increasing computational capacity continue, it will even-

tually be possible to simulate directly sound generation in complicated, three-

dimensional, unsteady flows of practical interest, such as supersonic jet flow. How-

ever, direct computation is currently not feasible for routine study of supersonic

jet flow because the flow contains far too many scales to be resolved in a reason-

able computation. Therefore, a combined modehng-direct computation approach

is taken in this research. First, the comphcated flow field of a supersonic jet is

broken down into simple "model" problems, chosen to isolate mechanisms which

are likely to generate sound. The modehng of the supersonic jet flow is described

in Chapter 2. Chapter 2 begins by a description of features characteristic of su-
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Figure 1.1: Some well-known equations of fluid mechanics. Note that the acoustic

wave equation is a special case of the Navier Stokes equations.



personic jet noise and then proceeds to break the complicated flow down into

several simpler problems which can currently be solved using reasonable computer

resources. Chapter 2 also presents an analytical model for shock noise genera-

tion. In this analysis, LightkiU's equation is used to derive the monopole, dipole,

and quadrupole source terms associated with an moving planar shock. The source

terms are presented and then a Green's function method is used to compute the

far field sound associated with each of the source terms. It is found that all of the

source terms can potentially contribute significantly to the far field sound.

Chapter 3 addresses numerical issues and methods involved in the computation

of flows with moving shocks. Computation of sound generation in shocked flows

is challenging because high accuracy is required to maintain the acoustic portion

of the solution, while dissipation is required at the shock to maintain stability.

Most of the calculations presented in this thesis use a finite-volume implementation

of an Essentially Non-Oscillatory (ENO) scheme which provides these important

algorithmic features. Because this algorithm is the basis for most of the calculations

of this research, and is not currently described in text-books, a brief description is

included in this chapter.

Once candidate sound generating mechanisms are identified and modeled, and

the numerical methods are in place, the flow for each model problem can be com-

puted and the acoustics extracted from the calculation. The model problems which

are addressed in this work are those associated with shock noise generation. Chap-

ter 4 describes the results obtained by an investigation of the first model problem:

sound wave-shock wave interaction. Computations of the interaction of a sound

wave with a shock wave in a quasi-one dimensional nozzle are presented which
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show significant amphfication of the sound wave pressure amphtude as a result

of the interaction. The increase in amphtude of the acoustic pressure is shown

to be a function of the Mach number upstream of the shock. Comparisons with

linear theory are made for the small-disturbance calculations which validate the

code. Results are also provided for the higher-amplitude cases. In addition, an

energy analysis is performed which shows that acoustic energy is generated during

sound-shock interaction.

Chapter 5 presents results obtained by the investigation of the interaction of a

vortex ring with a shock wave. This sound generating mechanism is more compli-

cated than the plane sound-shock interaction case because the shock bends dur-

ing the interaction, generating alternating compression-rarefaction-compression-

rarefaction regions along the acoustic wave front. Flow parameters downstream of

the shock are observed and from these observations the conclusion is drawn that

both acoustic waves and contact surfaces result from the interaction. Analysis of

the results shows that the acoustic wave spreads cylindrically, that the sound inten-

sity is highly directional, and that the sound pressure level increases significantly

with increasing shock strength. The effect of shock strength on sound pressure

level is consistent with experimental observations of shock noise, indicating that

the interaction of a ring vortex with a shock wave correctly models the physics of

shock noise generation.

Chapter 6 summarizes the significant findings of this work.
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Chapter 2

Modeling of Sound Generating

Mechanisms in a Supersonic Jet

2.1 Introduction

The inherently complicated nature of jet flows makes both theoretical analysis

and direct numerical simulation impractical for realistic flow Mach and Reynolds

numbers. The structure of the flow field of a supersonic jet is very complicated,

consisting of regions of laminar flow, turbulent flow, and transitional flow. Within

the jet there exist a myriad of structures of disparate scales, such as turbulent

eddies and shock waves, which make analysis of the fluid dynamics practically

impossible for general flows. Highly accurate numerical simulation of these flows

is impractical because of the disparity of the scales required to be resolved in the

computation.

In order to predict accurately the sound generated by complex jet flows, the

essential elements of the jet fluid dynamics must be resolved in the computation.
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Jet
Nozzle

Figure 2.1: Schlieren photograph of an underexpanded jet.

Experimental studies of noise generation in supersonic jets have provided insight

into what these essential elements may be. A result from an experimental investi-

gation of sound generation in a supersonic axisymmetric jet is included in Figure

2.1. This photographic image, provided by Dr. J.M. Seiner of the Jet Noise Labo-

ratory at NASA Langley Research Center [1], was produced by a horizontal spark

schlieren of an underexpanded supersonic jet ( ratio of exit pressure to ambient

pressure is 3.05, and the jet design Mach number is 1.8) and confirms the complex

nature of the jet flow. As the flow exits from the nozzle, it rapidly becomes tur-

bulent. For the underexpanded case shown here, shock waves are also present in

the flow, and a Mach disk is evident approximately one jet diameter downstream

of the nozzle.

For the acoustician, the wave field outside the jet plume is of particular interest.



10

It is obvious that several types of waves are present, indicating that there are several

types of sound generating mechanisms responsible.

Two types of wave fields are intense enough to be readily visualized on the

schheren photograph. The first appears to emanate from a region close to the noz-

zle exit near marker 'A' on the figure and radiate at approximately -4-30 degrees

from the jet axis. These waves propagate to the far field as acoustic waves, and are

thought to be generated by supersonically convecting eddies which occur when the

jet flow is heated and in unheated flows when the plume Mach number approaches

two [2]. The eddies create a form of sound known as "eddy Mach wave radia-

tion", which generally dominates the noise spectrum in directions of its dominant

directivity. The primary directivity can be determined by computing the angle

complementary to the Mach angle. (The Mach angle is determined from the eddy

convection velocity: # = sin -1 _).

The second type of wave outside the jet plume appears to emanate from the

terminal locations of the shock waves in the mixing layer. One such wave field is

readily seen emanating from a region in the proximity of marker 'B' in the figure.

This wave field appears to be more omni-directional than the eddy Mach wave

radiation, because the wave fronts appear to spread spherically from the point of

generation. This second type of acoustic wave is believed to be generated by the

passage of turbulence through the shock waves and is referred to as "broadband

shock noise" or "shock noise". The broad-band nature of this type of noise is

illustrated in Figure 2.2.

Figure 2.2 shows the spectrum of a typical underexpanded supersonic jet at

150 degrees from the jet axis. The spectrum is characterized by three types of
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Figure 2.2: Spectrum of a typical supersonic underexpanded jet.

phenomena which are highlighted in the figure. The figure shows that these three

components of noise tend to fall into distinct frequency bands. At low Strouhal

number (a dimensionless frequency formed by the product of the frequency and

jet diameter divided by the fully expanded jet velocity) jet noise dominates. Jet

noise is generated by turbulent mixing within the jet. The peak in jet noise, at

a Strouhal number of about 0.1, is believed to be generated by the large scale

structures within the shear layer and is typically referred to as eddy Mach wave

radiation. Both large and small scales within the jet generate mixing noise. The

mixing of the fine scales produces the background level of jet noise.

The peak of the spectrum is known as jet screech. Screech typically falls be-

tween the jet noise and the broadband shock noise in the spectrum. The accepted
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explanation for screech was originally proposed by Powell [3], who suggested that

screech is generated when the turbulence interacting with shock waves in the flow

develops a self-sustained aeroacoustic feed-back loop. The resonant phenomenon

which generates a high amplitude sound at a particular frequency and its har-

monics, is maintained by the shedding of a disturbance at the nozzle exit by the

passing of sound past the nozzle lip. Although PoweU's explanation of the screech

phenomenon is useful in explaining general features of the phenomenon, there are

features of jet screech which are still not understood [2].

The high Strouhal portion of the spectrum of Figure 2.2 is called broadband

shock noise. Broadband shock noise is present in al] shocked jet flows, and is due to

the interaction of convecting disturbances with the shock waves in the jet plume.

The broadband nature of this noise is due to the many scMes of turbulent eddies

in the flow. Experiments (e.g., [2], [5] ) show that most of the broadband shock

noise is directed slightly upstream.

Although jet engines are designed to be shock-free at design operating condi-

tions, jet engines are often operated at off-design conditions. Thus, screech and

broadband shock noise can contribute significantly to the sound being generated.

2.2 Models

Because jet flows are too complicated to be practically analyzed or directly simu-

lated, the approach taken in this research is to identify elements essential to sound

generation in supersonic jets, and analyze models of these mechanisms for insight

into the sound generation processes. The models presented here are probably not

the only models necessary for an in-depth understanding of sound generated by
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supersonicjets. However,it is assumedthat understandingisolatedmechanisms

will provide insight for reductionof noiselevelswithin a real jet flow.

The basisfor the modelsis the experimentalevidencedescribedin the first

section of this chapter. Experimental data indicate that noise is generatedby

different typesof mechanismswithin the jet. To gain insight into the fundamental

mechanismsassociatedwith soundgeneration,the complexflow of a supersonic

jet is modeledas illustrated in Figure 2.3. The first classof soundgenerating

mechanismsin the supersonicjet arisesfrom the interaction of flow disturbances

with the shockwaves.The elementswhich model the soundbeinggeneratedby

the interaction of flow disturbanceswith shockwavesare illustrated on the left

side of the figure: (1) the interaction of a vortex with a shockwave,and (2) the

interaction of a planesoundwavewith a shock.Becausethis researchfocuseson

the noisegeneratedby shockedflows, thesetwo elementswill be pursuedin detail

in Chapters4 and 5.

Additional modelsof soundgeneratingmechanismswhich arenot directly re-

lated to the presenceof shockwavesare illustrated on the right sideof the figure.

The modelpresentedin the upperright of the figureis flowpast a wavywall. This

modelsthe componentof soundgeneratedby large scalestructureswithin the jet

plume. Clearly,onewouldexpectMachwavesto begeneratedby flow pasta wavy

wall, and in the model,theseMach wavesareanalogousto the eddy Mach wave

radiation from supersonicjets. Themodelpresentedin the lowerright of Figure 2.3

is presented to model the interaction of turbulent structures within the jet, which

is believed to be responsible for the background noise ("jet noise") of supersonic

jet flows.
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Figure 2.3: Fundamental sound generating mechanisms of supersonic jet flow,

2.3 Sound Generation by Shock Motion:

Evaluation of Lighthill's Source Term and

Far Field Sound

This section presents an analysis of the sound generation by shock motion in the

context of Lighthill's acoustic analogy [6].

2.3.1 Background

LighthiU combined the equations governing the conservation of mass and momen-

tum into the form of an inhomogeneous wave equation. A brief derivation of

Lighthill's equation follows.

The physical law governing the conservation of mass written in indicial form is:

op o(p_,j)
o---i+ ozj - Q j = 1,2,3 (2.1)
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where p is the fluid density, uj is the j - th component of velocity, t is time, xi

is the coordinate in the i - th direction, and Q is the mass per unit time per unit

volume injected into the fluid.

The conservation of momentum equations are written:

Oui Oui OPij

P-_ + P_"_ - o_,j + F_ i,j = 1,2,3 (2.2)

where Fi is an externally apphed force, the stress tensor Pij = pgij -erij where 6ij is

the Kroneker delta, and o'ij is the viscous stress tensor, o'ij = 2#eij- Aekkgij, where

Ou"

= 1(_ + _), and # and A are the dynamic viscosity and second coefficienteij

of viscosity, respectively.

Taking the inner product of ui with Eqn. 2.1 and adding it to Eqn. 2.2, one

obtains:

Opui O(puiuj) OPij
0--7-+ 0_j + 0_---7= F_+ _,_Q (2.3)

Differentiating Eqn. 2.1 with time, subtracting the divergence of Eqn. 2.3, and

adding and subtracting c_V2p, one obtains Lighthill's equation:

02p cLv2 p _ OQ O(F_+ =_Q) 02T_j (2.4)
tgt 2 Ot cgzi + OziOz------_

where the Lighthill stress tensor is defined:

2 (2.5)Tij = puiuj - crij + p_ij - c_p_ij

The terms on the right hand side of 2.4 are the acoustic source terms. These

terms represent sound generated by unsteady mass addition (-_Qt), unsteady forces
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0(p_+,,_Q)
( 0z, ), nonlinear viscous effects, turbulence, and nonhnear propagation (puiuj),

and non-isentropic effects such as shock waves and heat addition ((iv - pc_)&j).

Effects of viscosity on the sound generation are represented by ¢ij.

2,3.2 Source Terms

Here, Lighthill's equation will be used to analyze the sound generated by shock

oscillation. To simpfify the analysis, dissipation effects are neglected, and only

the velocity component normal to the shock, u, is considered. Since there are no

applied forces or unsteady mass addition, the Lighthill source term simplifies to

Tla = puu + p- pc_ (2.6)

The source term of the Lighthill equation requires that the second partial deriva-

tive of TI: be taken with respect to z. It is beneficial to use generalized functions

because ordinary derivatives do not exist across the shock. The definition of a

generalized derivative in one dimension is [8]:

- + AfS(x- z,) (2.7)
Oz Oz

where 0-_ represents the generalized derivative operator, _ is the ordinary deriva-

tive, and Af represents the jump in the function f at the discontinuity located at

• _X 8 .

Applying 2.7 twice to obtain 0__

c_Tll OTII

Oz Oz

O2Tal 02Tla 00z 2 0z z + (ATaaS(z - z,)) + A( oT11- --G-=);;(=- (2.8)
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Figure 2.4: Schematic of shock oscillation used in the determination of Lighthill's

source term.

Thus, the Lighthill source term for sound generated by a moving shock has com-

ponents which resemble shearing stresses (quadrupole), unsteady forces (dipole),

and mass addition (monopole), as represented by the first, second and third terms

on the right and side of Equation 2.8, respectively.

In classical acoustics, where sound generation is considered in an ambient

medium, the sound pressure associated with monopoles, dipoles and quadrupoles

is proportional to the second, third, and fourth power of the source Mach number,

respectively. Therefore, the monopole source dominates at low Mach numbers,

and the quadrupole source dominates at high Mach numbers. However, for sound

generation at transonic speeds, each component may contribute significantly to the

sound generation. It is a purpose of this section to analytically determine which

term dominates the shock noise generation.

To determine the behavior of the monopole, dipole and quadrupole terms as

functions of Mach number, consider a planar shock, set in motion by an upstream

disturbance in Mach number, as illustrated in Figure 2.4. The Mach number
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upstreamof the shockis

M1 = M0 - Ms cos(wt - k_) (2.9)

where M0 is the undisturbed upstream Mach number, Ma is the maximum ampli-

tude of the disturbance Mach number, w is the frequency of the disturbance, and

/¢ is its wavenumber.

Disturbances in pressure, density, and sound speed upstream of the shock are

neglected because these quantities are proportional to the square of the upstream

disturbance Mach number.

Monopole Source Term

The monopole term on the right hand side of Equation 2.8 is

.0Tll ,_,
AC---_---)ot x - x, ) (2.10)

Considering for now only A(_),

0Tll _ 0Tll _ 0Tll I

0 2 2 2 0 c2M2

m. " 2_,2 2 _Op2 . , _ _, O(c_M2)- eOp2 2plc2MlCgM1
[c21v12 - coo) 0---_* zP2c2'v12 cO--_ -1- Ox O_

(2.11)

since Pl,Pl, and cl are, to first order, constant.

To evaluate Equation 2.11 in terms of the upstream density, sound speed and

Mach number, the well-known shock jump relations (see, e.g. [7]) are used. These

relations are presented below for completeness. The second equality refers to the

case of an idea] gas with the ratio of specific heats, 7 = 1.4.
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P2 27M_- (7- 1) 7M_ - 1

PI (7 + 1) 6 (2.12)

p__= (7 + 1)M1_ _ 6M_ (2.13)
pl (7- 1)U_+ 2 i_ + 5

u2 (7- 1)M_ + 2 M_ + 5

ul (7 + 1)M_ 6M_ (2.14)

To compute the Lighthill monopole source term, the derivatives of the down-

stream pressure, density, and velocity are required. Taking the first derivative with

respect to x, for the case of 7 = 1.4, one obtains:

COP2 7 cOM1

Ox - -_pl M1 cOx

= _plc_M1 cOM1cOx
(2.15)

0(c2M2) Cl ]¢( i 2 - 5) COM1

COx - 6 M12 cOx
(2.16)

cOP2

cO-¥ = 60pl

where _ - -Msk sin(wt kx).

M1 cOM1

(5 + M_)2 cOx
(2.1w)

Substituting in Equations 2.12, 2.13, and 2.14 into 2.11, and working through

the algebra one obtains:

A( cOTn 2 M1 cOM1
-5-; ) = -6°Plc°°(M_+ 5)2 cOx



2O

A ( _T_/_x )
-60pick sin(o_t)

_ fixed

_M s fixed

1.0 i:s 2:0 2:5-3:0
M o

Figure 2.5: Normalized monopole component of the Lighthill source term sound

generated by a sinusoidally oscillating shock.

: -60plc_ M1Mak sin(wt - kx) (2.18)
(M?+5)2

Substituting M1 = M0 - M, cos(wt - ks), and keeping only terms of order Ms,

one obtains:

2 MoMsk sin(wt - k_) (2.19)60plcoo(M0_+ 5)2

Equation 2.19, normalized by 60plc_ksin(wt -kx), is plotted as a function of

M0 (for constant wavenumber) in Figure 2.5.

Two cases are shown. The upper curve in the figure represents the source term

when the ratio of perturbation Mach number to upstream Mach number, M_oo is held

fixed. The lower curve represents the source term for a fixed perturbation Mach

number, Ms. Clearly, the LighthiU monopole source term reaches a maximum

value. To determine the exact location at which it maximizes, the first derivative
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of Equation 2.18 with respect to M0 is determined and set equal to zero. The

value of M0 for which this derivative is zero, holding M fixed, is found to be

a A/aJZu._M0 = V/_ _ 1.29. The value of M1 for which _ _ ax J is zero, holding M

fixed, is found to be M0 = qr5 _ 2.24.

Thus, the monopole source term reaches a maximum when, for constant shock

velocity amplitude, and constant disturbance wavenumber, M0 = V/-_. When

the ratio of the shock velocity amplitude to the pre-shock Mach number is held

constant, the source term maximizes at/1//0 = v/5 for a fixed wavenumber.

For an acoustic disturbance, the wavenumber varies with upstream Mach num-

ber,

k
02

c1(1 + M1)
W

c1(1 + Mo)

cos(kz -
+ (1 + Mo)_)M" O(M_) 2+ (2.20)

The wavenumber may be approximated by k = cl(l_-Mo) and substituted into

Equation 2.19 while maintaining a truncation error of order (M_) 2. Furthermore,

if the sound speed approaching infinity is taken to be the stagnation sound speed,

the relationship between Cl and coo is:

el

5 ( Mo cos@t - kz)= coo 5 + M2o 1 + -_T-MTo) Ms) + O(M 2) (2.21)

Thus, the monopole source term for k = k(Mo) is

-60pl coowMoMa sin(wt - kz)

x/_(M02 + 5)3/_(1 + Mo) (2.22)
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Figure 2.6: Normalized strength of monopole component of the Lighthill source

term for a sinusoidally oscillating shock. Wavenumber k is a function of upstream

Mach number and sound speed.

Equation 2.22 normalized by -60plcoowM, sin(wt - kx) is plotted in Figure

2.6.

Dipole Term

Consider now the dipole term of Equation 2.8. This term can be written:

0 [ATllS(Z - =,)] = ATl16'(z - z,) (2.23)
0z

since the jump across the shock is not a function of z. Thus, the jump in Tl1 is of

interest.

But, from the unsteady jump relations (see Appendix A for derivation),

(2.24)
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p2u2(u_ - Us) + P2 = plUl(Ul - U,) + pl (2.25)

one can solve for the change in pressure across the shock:

(2.26)

Substituting 2.26 into 2.24, and neglecting higher order terms in uo, one obtains:

 Tll -(p, - pt)cL (2.27)

Therefore, upon substitution of 2.13 into 2.27, and simplification, the following

expression for the dipole source term is obtained:

ATll = -5plc_ (M_ - _)\M_T (2.28)

Substituting Mi = M0 - Ms cos(wt - kz) into Equation 2.28 and neglecting

terms of order M_ and higher, one obtains:

-5plc_ [ 12MsMocos(wt - kz)] (2.29)AT11- (Mg + 5)(/l/°2-1)- Mg+5

It is interesting that unlike the monopole term, the dipole term contains both

zero-th and first order terms in Ms. Another difference between the monopole

and dipole terms is that the wavenumber affects both the amplitude and phase of

the monopole term, while it affects only the phase of the dipole term. It is also

interesting that the monopole term and the first order component of the dipole term

are identical except for the phase and the multiplicative factor of the wavenumber.

As illustrated in Figure 2.7, there are no local extrema for the dipole source

term when the flow is supersonic. This can be verified analytically by taking the

derivative of Equation 2.28 with respect to M0 as for the monopole case.
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Figure 2.7: Normalized strength of dipole component of the LighthiU source term

for a sinusoidally oscillating shock.

Quadrupole Term

Finally, consider the quadrupole component of Eqn. 2.8. The quadrupole term

requires that the second ordinary derivative of the Lighthill stress tensor component

Tll with respect to x be evaluated. Thus,

027'11

_2

0 Ou u2COp + Op 2 0Pl
- O_ [2Pu_ + O_ _ - co_

92u . OuOp cgu 2 -O_P 02P
= 2pu_-_ + _,_ + 2p(_) + (_2_ cL)_ + (2.30)

The evaluation of Eqn. 2.30 upstream of the shock is simple, since the deriva-

tives in p , p, and c are high-order, and hence, neglected. The evaluation of Eqn.

2.30 upstream is:

02Tll 1 [ ( ¢9M1_ 2 Oe M1] (2.31)
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Substituting M1 = Mo - Ms cos(wt - ka:) and neglecting higher order terms in

Ms, this expression reduces to

cq2Tnox21 = 10pl c_k e MoM, cos(wt-(5+ Mo2) kay) (2.32)

For an acoustic upstream disturbance for which the wavenumber is a function

of Mach number, this becomes:

O_Tll [ = 2 pl toe MoM, cos(tot - k_) (2.33)0x2 1 (5 + Mo2)(1 + M0) 2

The evaluation of the quadrupole term downstream of the shock is more compli-

cated since the second derivatives with respect to x of p2, u2, and p2 are required.

The second derivatives of the variables in Eqns. 2.12, 2.13, and 2.14 are:

(M, .,)3 (5 - 3M_) _ + (5 M1 + MI z) 0---ff_--J (2.34)

02p2 5 2 ((OMl_' O'MI) (2.35)

02u2 cl ( (OMI_ 2 ) OeMl) (2.36)0_2 -6M? lO\--N-] -(5M_-MI _ 0-b-P-

where _ = -kM, sin(_0t- k_), and o__ = kSM,cos(_t - k_).19z z

Substituting Eqns. 2.35, 2.34, and 2.36 into Eqn. 2.30 and algebraic manipu-

lation provides:

02Tno_22 = 2pl c_

+ 12plc_

OMI _ 2 O_M1
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-5Ml 1 v°_MI (2.37)

Substituting M1 = M0 - Ma cos(wt - k_) and neglecting higher-order terms,

one obtains:

MoMa (M_ - 1)cos(wt-/¢z) (2.38)
10plcLk2 (5 + M_) 2

It is interesting to note that the quadrupole source term contains only first order

terms (and higher) in Ma and goes to zero as M0 _ 1.

Substituting in Eqn. 2.20 for k = k(M0), the quadrupole term becomes:

lOplw2 MoMs
(5 + M02)(1 +/140) (M0 - 1) cos(wt - kz) (2.39)

It is interesting to note that the quadrupole source term goes to zero as/1//0 ---* 1,

and that the quadrupole and dipole source terms have the same phase.

2.4 Evaluation of Acoustic Pressure

The previous section provides expressions for the monopole, dipole and quadrupole

source terms of LighthiU's equation for shock motion in one dimension. In order to

make statements regarding the relative importance of these components to the far

field sound, a Green's function approach is used to solve for the far field acoustic

pressure. The primary assumptions in this analysis are that only the first order

terms in perturbation Mach number Ma are necessary to determine the relative

importance of the monopole, dipole and quadrupole terms, that the observer is

located in the far field, and that the shock is a finite disk in a plug flow, as

illustrated in Figure 2.8. The flow outside the plug is ambient and is characterized

by the density poo and the sound speed coo. For the analysis presented here,
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contributions of the interface between the plug flow and ambient medium to the

far field sound are neglected.

2.4.1 Monopole

In order to evaluate the far field sound resultant from the monopole source, a

cyhndrical coordinate system is set up with the origin at the shock disk center,

as illustrated in Figure 2.9. The position of the source point along the disk is

denoted by _ and the position to the observer is denoted by E. The magnitude

of the vector connecting the source and observer points /_ = E - _ is denoted R,

which is determined by geometrical arguments to be:

n = Cr02 + tr2 - 2r0trsin 0 cos(¢ - X) (2.40)

Making the far field approximation as --* 0 and employing the binomial expan-
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sion, this simplifies to:

R _ r0[1 - _ sin 0 cos(¢ - X)] (2.41)
7"0

where, as illustrated in Figure 2.9, r0 is the distance from the observer to the center

of the shock, a is the radial coordinate to the source point, 8 is the angle from the

jet axis to the observer, ¢ is the observer angle about the axis of symmetry, and

X is the angle to the source point in the plane of the shock disk. Applying the

Green's function approach to solve for the far field acoustic pressure resulting from

the monopole component of the Lighthill source term, the source term is multiplied

by the free space Green's function and integrated over the source volume V and

time v:
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yM(_,t)= --1 f r6" c2 MoMA_j j up1_(_ _ sin(tar-kyl)_(yl-Vl,)5(7--t n+ n/c_)eVer
V r

(2.42/

where Yls = 0 is the shock position, and dV = dyao'do'd X is the incremental volume.

Making the far field assumption such that _ _ _, and integrating over Yl,

pM(_.,t) - 4_r0--1 f rf 60plc L (M_M°M'k+5) 2 sin(tar - kyls )t_(7" - t - R/coo )dA, dr
As

(2.43)

where Aa is the shock area. Integrating over source time 7-,

-1 f Dvpl_c2 MoM, k
pM(£,t) - 47rr0 --J _(M-_o2 7-_ 2 sin(tat- R/cc_ - kyl,)dA,

Aa

-60pie L MoM.k

4._0 (Mg+ 5)2
Ra 2v

f f sin(tat- (to - _r sin 0 cos(¢- X)lo.do.dx (2.44/
coo -- kyl8

0 o

Integrating with the aid of expressions 3.719-2 and 3.715-13 in [9], the analytical

expression for the monopole source pressure is:

-30plca_kMoMs (R, 0 w tarO )pM(z,t)= (M_ + 5)2r0 ws_nn0 J1 sin _)sin(tat- _coo (2.45)

where J1 is the first order Bessel function of the first kind.

2.4.2 Dipole

Again using the Green's function approach to solve for the pressure due to the

dipole component of the Lighthill source term:

l ff 2 2 1)51(y1
-5plc_(M d -

PD(x't/ = 4-_ (-_o_T5-) _ - Yl.)
V_"

R
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+
60pl c2 MaMo

(M_+5)_
)b(r R- t + -d_)dVdv

cos(wr - kyl)6'(yl - Yl, R

(2.46)

Making the far field approximation _ _ _ integrating the first term over v, and
I. 0

using the fact that [8]:

the integral of the first term goes to zero. Making the far field approximation and

integrating the second term over _-:

60plcLM,M0cos(_(t- n/c=) - kv_)6'(vl- v_.)dYpD(_.,t): ro±fv (Mo_+ 5)_ (2.48)

Integrating over Yl using Eqn. 2.47:

pD(_.,t) 1 60mcLm.Mo f= r_ (M_ + 5) 2 - [cos(w(t - R/co,,) - kyl)] I,_:odA,
Ai

C_r0 (Mg+5) 2 A,

(2.49)

where oR cos 0, and dAs = o'do'dx. Integrating over the shock area, the

expression for the dipole source contribution to the far field sound is:

pD(£,t) = --30p_cLMsMo(k _ __
(Mo_+ 5)%

cosO)sin(w(t - to/coo) dl --
c_ \ coo /

(2.50)

It is interesting to note that

w cos 0'_p.(_,_) = pM(_.,t) 1 _ / (2.51)
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2.4.3 Quadrupole

Using the Green's function approach to determine the contribution of the down-

stream part of the quadrupole source term to the far field sound,

po.(£,t) = f /lOplc_k2MoM,(M_ - 1) 6(v- t + R) cos(wr _ kyl)dVdv
v _- (M02 +5) 2 R

(2.52)

where R = V/ 02+ V2a + - 2r0yl cos 0 - 2r0_ sin Ocos X. Making the far field

_r2 y2

approximation that _ _ 0 and _o _ 0, and using the binomial expansion,

R _ r0[1 - _ cos 0 - _o sin 0 cos X]. Note that in integrating the quadrupole term,

the integral is over the entire source volume, since there are no delta functions

which limit the integral to the surface. This provides a challenge for this model

because integrating over an infinite volume does not correspond to physical jet

flows. Therefore, for the purposes of this analysis, the volume term is limited to

a length -4R, < Yl < 4R, along the axial coordinate. This range is selected

to approximately correspond to average shock spacing in supersonic nozzles [10].

Therefore, for integration of the downstream quadrupole term, the integration

limits are 0 < yl _< 4R,. Attempts at obtaining an analytical expression for this

integral were unsuccessful. Therefore, numerical integration is used to evaluate the

quadrupole term.

To simplify the comparisons and isolate the sound generated downstream on

the sound field, only the region downstream of the shock is considered in the

volume integration. For the purposes of determining the relative importance of

the monopole, dipole, and quadrupole terms it is also assumed that the source is

compact, i.e., the wavelength of the sound is large compared to the source size. The

use of the compact assumption allows an analytical expression for the quadrupole
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term to be obtained, since R in the argument of the cosine term in Equation 2.52

reduces to r0.

Employing the compact source assumption, the analytical expressions for the

monopole, dipole, and quadrupole terms are found to be:

-15plc_kA,MoMa sin(wt - wr.___oo) (2.53)
pu(_,0 = (M0_+ 5)=_0_ coo

pD(_,_)= pu(_,_) 1 c_k J (2.54)

-5plc_kA,MoMs

pQ(_,t) = (M2o + 5)2r0_ " (M2o - 1)sin[kR,]cos[wt Wr0coo kRs] (2.55)

Figure 2.10 shows the normalized acoustic root-mean-square pressure of the

monopole, dipole, and quadrupole terms for a particular case with an observer

located 100 shock disk radii (r0 = 100) away from the mean shock position at an

angle of 8 = _ from the jet axis. For ease of comparison, the root-mean-square

pressure is normalized by the constant multiplicative factor of the monopole, dipole,

and quadrupole pressure terms, namely:

15plc_kA, MoM, (2.56)
vr0(M0 _ + 5) 2

and the flow variables are normalized with respect to the sound speed c_, the

shock disk radius Rs, and the upstream density Pl. For these comparisons, the

wavenumber, k, varies with the mean flow Mach number as prescribed in Eqn. 2.20.

There are several features worth noting on this figure. First, the quadrupole term

increases with mean flow Mach number more rapidly with increasing frequency.
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Figure 2.10: Root-mean-square far field pressure of the monopole, dipole, and

quadrupole terms in the Lighthill analysis of shock noise. Results for three fre-

quencies are shown.
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The dipole terms increase with mean flow Mach number. The variation in the

monopole terms is an order of magnitude smaller than the variation in the dipole

terms. Although difficult to see on this scale, the monopole terms peak and then

decrease with increasing Mach number. The monopole terms dominate for the

low frequencies over the entire Mach number range, and for the high frequency

case at low Mach For the case w = 1, the quadrupole term begins to dominate

at about M0 = 2.8. At low frequencies (for which the source is highly compact),

the contribution of the quadrupole terms is negligible over the Mach number range

considered in the analysis. The wavelength of the sound is

= 2 coov (1 + M0) (2.57)

Thus, low frequencies correspond to highly compact sources. For example, for

w = 1, the wavelength over the range of i < M0 < 3 is 11.5 < ,_ < 15. The range of

wavelengths are not much larger than the source size (4R, = 4), and the compact

assumption begins to break down. On the other hand, the range of wavelength for

a source frequency of w = 0.1 is 115 < )_ < 150, and the compact assumption is

valid.

Figure 2.11 shows the effect of observer position on the root-mean-square pres-

sure of the monopole, dipole, and quadrupole terms. The results shown are for an

observer located at 100 shock disk radii away from the mean shock position, at an-

gles of $ = 0, 7,_ and _ from the jet axis. The monopole and quadrupole terms are

unaffected by the change in observer position; PM at all observer positions shown

is seen to change only modestly about a value of approximately 0.016, and pQ is

seen to increase with mean flow Mach number from 0 at M0 = 1 to approximately
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0.003 at M0 = 3.8. The dipole component is affected by the observer position. The

dipole term is stronger at observer angles closely aligned to the jet axis, which is

consistent with directivity patterns typical of dipoles. In addition, the dipole term

reduces to the monopole term at an observer position of 8 = r/2.

2.5 Conclusions

Detailed analysis and direct numerical simulation of the sound generated by realis-

tic supersonic jet flows are currently impractical. One way to gain insight into the

sound generating mechanisms of such a complicated flow structure is to model the

elements considered to be essential to the sound-generation process. Four essential

elements were presented: Flow past a wavy wall, vortex-vortex interaction, sound-

shock interaction and vortex-shock interaction. Because the focus of this work is

on noise generation in shocked flows, the last two of these elements flows will be

studied numerically in Chapters 4 and 5.

This chapter presented an analysis of the LighthiU source terms associated with

a model of an oscillating shock. The results presented for the acoustic pressure

are accurate to first order in the perturbation Mach number, and are valid only

for an observer in the far field. The figures presented are valid for situations

in which the source is compact. The analysis shows that the monopole, dipole,

and quadrupole terms are all potentially important in shock noise generation. The

term which dominates in a particular situation depends upon the observer position,

frequency, and mean flow Mach number. For the cases tested here, the monopole

term dominates for low frequencies over the entire range of Mach numbers studied.

Both the monopole and dipole terms are significantly larger than the quadrupole
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term at low frequency. At high frequencies, the quadrupole term dominates at high

Mach number.
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Chapter 3

Numerical Methods and Issues

3.1 Introduction

This chapter addresses numerical issues concerning the computation of sound gen-

eration in shocked flows. The direct simulation of sound generation in shocked

flows is challenging because high accuracy is required to resolve the acoustic por-

tion of the solution, while dissipation is required to maintain stability at the shock.

Because shock generated sound places high demands on the algorithm, care must

be exercised in the selection of the scheme used in the simulations. Two algorithms

are used in the results presented in this thesis. The first is the popular MacCor-

mack scheme which is second order accurate in time and in space. It is used as

a baseline in scheme comparisons because of its computational efficiency and sim-

plicity. MacCormack's scheme is relatively inexpensive, but Gibb's oscillations can

occur in the vicinity of the moving shock, even with added artificial dissipation.

MacCormack's scheme, as it is implemented in this work, is described in Section

39
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3.2.1. The EssentiallyNon-Oscillatoryschemeis usedin most of the calculations

presentedin this thesis. This class of schemes is relatively new, and is not yet

described in text books. It was chosen because it allows for high-order accuracy

in smooth regions of the flow while minimizing oscillations around discontinuities

in the solution by the use of adaptive stenciling. Second, third, fourth, and fifth

order accurate implementations of the ENO scheme were used during the course

of this research. The scheme is described in Section 3.2.2.

Section 3.3 deals with numerical issues regarding the calculation of shocked

flows. The Gibbs' phenomenon produced by attempting to resolve a discontinuity

on a finite mesh is well known, and is not described in this thesis. There is an

additional oscillatory phenomenon which manifests itself when the shock wave is

moving slowly relative to the mesh. This additional phenomenon has only recently

been observed and described [2], and has only very recently been quantified for

high-order schemes [3]. Much of the content of this section has been published by

the author in [3], but is included here for completeness, with permission from the

publisher.

It is well known that a high degree of accuracy is required to perform acoustic

calculations. High accuracy can be obtained by using many cells (or grid points)

in a low-order accurate scheme, or by using fewer cells (or grid points) in a higher-

order accurate scheme. A method of determining which approach is most eco-

nomicaJ is outlined in Section 3.4. The result shows that the most economical

approach depends on the degree of accuracy required. For acoustic caJculations

where the degree of accuracy required is on the order of 10 -_, the 3rd order ENO

scheme proves to be most economical. Hence, this is the scheme used in most of
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the calculationsof Chapters4 and 5..

Finally, Section3.5 presentsinformation regarding the extraction of acoustic

phenomena from aerodynamic flows. The separation of acoustics from aerodynam-

ics cannot be performed in the near field, and thus the properties of acoustic waves

in the far field are given. The implications of these properties on setting up and

running a calculation for sound generation are then described. Some methods of

analyzing the acoustics are provided.

3.2 Algorithms

3.2.1 MacCormack_s Scheme

The classical MacCormack's scheme is employed in this research because it is ef-

ficient and has been used extensively in computational aeroacoustics. (e.g. [17],

[19], [18]). MacCormack's scheme is described in many textbooks (e.g. [21], [22]),

but for completeness the algorithm is briefly outlined here.

Consider the system of hyperbolic equations:

OU OF
--+--=0 (3.1)
Ot 0_.

where U is a vector of J components and F is a J component flux function of U. A

simple example of such a system of equations is the Euler equations. MacCormack's

scheme approximates the solution to Eqn. 3.1 by a two step predictor-corrector

technique. For each component of the U vector, the predictor step is:

At

0?+`= F?) (3.2)
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and the corrector step is:

v;,_= ![u;, + _2÷,__
2

A_ -n

_(Fj - P/-1) (3.3)

where the superscript n represents the n th time level, the subscript j represents

the jth cell, and F represents the flux function F evaluated at the predictor value

0.

MacCormack's scheme is second order accurate in space and in time. AnMysis

of the stability of MacCormack's scheme, with discussion about the amplification

and dispersion factors can be found in textbooks such as [21] and [22].

MacCormack's scheme as presented in Eqns. 3.2 and 3.3 experiences difficulty

maintaining stability when applied to shocked flows. Therefore, additionM artificial

dissipation is required. In this algorithm, artificial viscosity of the Jameson type

[20] is added to the right hand side of the predictor step. The corrected numericM

flux is defined by

where

and

where

Fjn+l - F_ - F AV (3.4)

FAV u_) cl_+)_/2(g_+_3u_+1+ 3u_ u__l) (3.5)Irr.
= ti+l/2\Ut+l ....

----- K(2)(lu ) + c)imax[vi, vi+l]

e(2) l= ma=[0,K(4)(lul+ c)_- _+_/v (3.6)

[pi+l - 2pi + pi-1]
vi = (3.7)

Pi+l + 2pi + pi-1



43

wherep is the pressure, u is the flow velocity, and c is the sound speed. In the

calculations presented here, the coeffÉcients are defined K(2) = 41-and K(4) = 2-_s"

The pressure term in ¢(2) is generally of second order in smooth regions of

flow, the e(4) term dominates, and the artificial dissipation is fourth order. Near

discontinuities, however, the pressure term reduces to zeroth order, the e(2) term

dominates, and the artificial dissipation is second order.

3.2.2 ENO Scheme

The class of ENO schemes is relatively new [7], and is chosen because high accuracy

is achieved in smooth portions of the flow, while spurious oscillations around flow

discontinuities such as shocks are bounded. A brief discussion of the properties of

ENO schemes is given below, but interested readers are referred to the references

[7] and [8] for details.

An ENO solution operator Eh is r th order accurate in the sense of local trun-

cation error

EhV" = U "+a + O(h "+a) (3.8)

where U(x) is the sufficiently smooth exact solution, and h is the cell spacing.

The distinguishing property of ENO schemes is that spurious oscillations near

discontinuities in U are bounded. For the one-dimensional scalar case, this can be

written:

TY(ZhV) = TV(U) + O(h a+q) (3.9)

for some q > 0, where TV(U) is the total variation of U as a function of x, defined

as TV(U) = F_,i IUi+a - Uil for a discrete solution to a scalar conservation law.

Bounding oscillations near discontinuities is accomplished in ENO schemes
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through the use of an adaptive stencil. Because the stencil used for discretiz-

ing the differential equations adapts to the solution, schemes based on the ENO

property may be thought of as adaptive filters or non-hnear algorithms.

ENO schemes minimize numerical oscillations around discontinuities by using

data from the smoothest part of the flow. At each cell, a searching algorithm

determines which portion of the surrounding flow is smoothest. The stencil span-

ning this portion of the fiow is then used to construct a higher order accurate,

conservative interpolation to determine the variables at the cell interfaces.

In this particular finite-volume implementation, the interpolation operator is

apphed to the cell averaged characteristic variables, and the accuracy in space and

in time is third order. Time integration is accomphshed by the use of a third order,

three stage Runga-Kutta scheme discussed by Shu [8]. The algorithm is applied

to the conservation law form of the equations so that shocks are captured in the

computations and no shock fitting is required to enforce the Rankine-Hugoniot

jump relations across shocks which appear in the solution.

3.2.3 Stencil Biasing Parameters

ENO schemes can achieve high-order accuracy in smooth regions and capture

shocks without oscillations by the use of adaptive stenciling. As the ENO schemes

were originally presented in [7], the stencil shifts freely due to any detection of a

numerical gradient. The direction of the stencil shift is determined by the mag-

nitudes of the neighboring divided differences. The stencil shifts away from the

larger differences. However, a loss of accuracy can occur when this freely adap-

tive algorithm is used [10] [9]. Shu [11] has suggested that the stencil be biased

towards a preferred stencil, the one that makes the scheme stable in the sense of
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hnear stability analysis. The stencil is allowed to shift only when one neighboring

difference is larger than the other by some factor. This factor will be referred to

as the "bias" parameter.

This biasing can be accomplished by implementing a factor in the search stencil.

To explain how biasing is used to affect the stencil, let A k denote the operator that

yields the k - th forward difference on a stencil of k + 1 cells with a left-most index

i, which is defined recursively by:

Ak_ Ak-l_ k-1 -= -A_ u, k=2,3, (3.10)--i+1 "'"

The algorithm begins by setting jl(i) = i. This one-cell stencil results in a piecewise

constant reconstruction that is spatially first order accurate. In order to choose

jk+l(i), k = 1, ...r - 1, the two stencils considered as candidates are those obtained

by annexing a cell to the left or right of the previously determined cell. The stencil

which is selected is the one in which the k - th difference is smaller in magnitude:

jk+l(i) = { jk(i) - 1, if trLlA_21 < _rRIA_72 I
jk(i), otherwise.

where A_2 and A_fi are the k-th differences obtained by annexing the cell to the

left or right of the previously determined stencil, respectively, (trL, an) = (1, _) or

(&, 1) for biasing to the left or right, respectively, with tY > 1.

Even when a bias parameter is used, there may be a loss of accuracy when all

the numerical gradients in a region are small, but some are orders of magnitude

larger than others. Atkins [12] has suggested the use of another parameter, which

serves as a threshold, to force the shift to the preferred stencil whenever neighboring
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differencesare small, regardless of their relative magnitudes. This parameter will

be referred to as the "threshold" parameter.

The threshold parameter is implemented as

iflAkfil < e andJA_fi I < e then jk+l(i) .k+l •= Js (,) (3.11)

where e is a small parameter and j_(i) identifies the stencil obtained by annexing

the k - th cell in the linearly stable direction.

Research regarding the appropriate stencil biasing parameters is on-going [16].

However, the results presented in this thesis used the definitions cited in the articles

of [121 and [11].

3,2.4 ENO Flux Computation

ENO schemes of Godonov type rely upon the solution of the Riemann problem to

calculate numerical fluxes. Two methods of computing the fluxes across the cell

interfaces are evaluated in this thesis. The first is due to Roe [13], and the second

is due to Osher [14].

Consider a system of hyperbolic equations,

OU OF

0--T + _ -----0 (3.12)

where U is a vector of J components, and F is a d component differentiable function

of U.

Roe's approximate Riemann solver determines the change in flux by finding a

mean Jacobian matrix A which satisfies:

AF-- JiAU (3.13)
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where A represents the difference between any two states in solution space. The

matrix A is required to have a complete set of right eigenvectors and reduce to

the exact Jacobian when the states to the left and the fight are equal: A(U, U) =

#_-_(U). If _(j), _(J), and 6wj are the jth eigenvalue, right eigenvector and inner

product of the jth left eigenvector with AU, respectively, the Eqn. 3.13 can be

written:

J

AF = _ _(J)_(j)_wj (3.14)
j=l

The flux at the cell interface is written:

1 F 1= - I'_(i) owif L+ FR) " " #) (3.15)
3

where Fz and F/_ are the values of the fluxes to the left and right of the interface,

respectively. Roe gives the expressions for i, _ and _wj for the Euler equations in

[13].

Osher's approximate Pdemann solver computes fluxes in state space rather than

physical space. The flux difference between the left and fight states is written:

f_R OFAF --- -_dU (3.16)

where the integral is evaluated along an arbitrary path F in state space.

The flux at the cell interface is given by:

f = -_(FL + FR)-_Y_ IA(j)Ir(_)dU (3.17)
j (i)

The evaluation of the integral in Eqn. 3.17 requires knowledge of the states along

each subpath r(j) and any sonic states that occur. Osher and Solomon [14] solve

for these states explicitly for the Euler equations.
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3.3

3.3.1

Numerical Error Generated by a Slowly

Moving Shock in a Duct

Introduction

The numerical treatment of unsteady shocks is challenging. In addition to the usual

concerns of stability and accuracy, there are conflicting requirements regarding the

calculation of the shock region. On one hand, it is desirable to resolve the shock

crisply by minimizing the smearing effect of artificial dissipation at the shock. On

the other hand, some artificial dissipation is required at the shock to minimize or

eliminate the oscillations which occur when attempting to resolve a discontinuity

on a finite mesh. The Gibbs phenomenon produced by attempting to resolve a

discontinuity on a finite mesh is well known, has been discussed widely in relation

to steady shock calculations, and will not be addressed here. There is an additional

oscillatory phenomenon which can manifest itself in the computation of slowly

moving shocks. This additional oscillation resulting from the unsteady nature of

slowly moving shocks has only recently been discussed in the hterature [1] [2] [4],

and is investigated here to determine the nature of the spurious oscillations and

the effect that these spurious numerical oscillations have on computing sound.

In order to simphfy the analysis and better isolate difficulties in the numerical

calculations, only one dimensional and quasi-one dimensional flows will be treated

here. Thus, vorticity waves will not appear and emphasis will be on predicting

the acoustic and entropy waves. The model problem to be investigated is a shock

moving at a constant velocity in a one-dimensional flow field.

Spurious oscillations in unsteady computations of slowly moving shocks have

been described by Woodward and CoUela [1], who observed the oscillations in com-
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putations of high-pressure ratio (p2/pl > l0 s) shocks. These oscillations appear

when the speed of the shock, relative to the mesh, is small compared to the max-

imum flow speed at the shock. Woodward and Collela suggested that additional

numerical dissipation be added to the scheme at the shock, and explained that

the reason for this spurious numerical behavior is that the shock transition layer

alternates between being thick and thin as it passes through the mesh. Roberts [2]

has noted that the oscillation phenomenon is not observed in discontinuous solu-

tions of scalar equations. Roberts explains the oscillation in terms of the discrete

shock structure and shows that among first order flux difference splitting schemes,

Osher's approximate Pdemann solver provides the smallest oscillations because the

unsteady nature of the numerical shock structure in state space most closely ap-

proximates the true shock structure. Roberts observed the spurious oscillation

phenomenon in calculations for shock pressure ratios as low as 1.2 in calculations

using first order flux-difference splitting schemes. Lindquist and Giles [4] observed

spurious oscillations in computations using a Jameson style Runge-Kutta scheme

with blended second- and fourth-difference artificial dissipation and also with a van-

Leer flux vector sphtting algorithm for shock pressure ratios 1.5 < p2/pl < 2.1.

They described the oscillations in terms of the changing shock shape as the shock

traverses the computational mesh, and found, as did Woodward and Collela, that

the spurious oscillations could be reduced by smearing the shock over more com-

putational cells.

Spurious oscillations have been observed during the course of this research in

computations using the classical MacCormack scheme, a recently developed high-

order accurate Essentially Non-Oscillatory (ENO) scheme, and a recent imple-
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mentation of Jameson's Runge-Kutta scheme which employs a symmetric Total

Variation Diminishing (TVD) matrix dissipation. Because the interest here is to

compute sound generated by shocks and shock-fluid interactions, artificial dissipa-

tion is not explicitly increased over the solution domain because of the deleterious

effect on the generation and propagation of sound in the solution. This has created

some difficulties because the spurious oscillations are preserved in the high-order

accurate flow computations.

ENO schemes of Godunov type rely upon the solution of the Riemann problem

for the calculation of numerical fluxes. The effect that two Riemann solvers have on

the spurious oscillations will be described in this thesis. In addition, because ENO

schemes use an adaptive stencil to reduce spurious oscillations, modifications of this

adaptive procedure will be examined. Finally, the effects of shock pressure ratio,

Courant number, grid spacing, and shock speed on the amplitude and frequency

of the spurious numerical oscillations will be described.

3.3.2 Analysis: Exact Solution

The governing equations for the inviscid, compressible flow in a constant area duct

are assumed to be the one-dimensional Euler equations,

OU OF

o-7+ o%-= 0 (3.18)

where U is the vector of conserved variables [p, pu, pe] T, and F is the flux vector,

[pu, pu 2 + p, (pe + p)u] T. Standard notation is used; p is density, u is velocity,

e is total energy per unit mass, and p is pressure.

Consider these equations along the duct length 0 < x _< L for t > 0, with the
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initial condition:

U1 _,(x.
U(*,0)= (3.19)

where the constant states 1 and 2 represent the flow upstream and downstream of

a shock, respectively, and m, is the shock position.

If these equations are integrated along the duct, one obtains:

+ F(U(L,t))- F(U(O,t))=0 (3.20)

One solution is the trivial case, U1 = U2. The non-trivial solution to this

equation with the initial condition 3.19 is a flow field with a shock moving at

constant velocity, u,, which satisfies

F(U2) - F(U1) = u,(U2 - UI) (3.21)

Eqn. 3.21 follows directly from Eqn. 3.20 for constant area states on either side of

the shock. The solution U1 = U2 also satisfies Eqn. 3.21.

3.3.3 Results

The unsteady, compressible, inviscid flow in the duct is solved by numerical inte-

gration of the one dimensional Euler equations. All variables in the supersonic flow

field at the inflow boundary are prescribed. The static pressure at the downstream

(subsonic) boundary is prescribed. Variables are normalized by the duct length,

stagnation pressure and stagnation sound speed. Control over the shock velocity

is obtained by making a transformation u = u - ua, where ua is the prescribed

shock velocity, so that a positive shock velocity moves the shock to the left of the

computational domain.

Computations have been performed over a range of shock pressure ratios and

shock speeds, but in the interest of brevity, only one typical calculation is shown
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here. The calculationswereperformedon a 512-ceil grid at a Courant number of

1. Unless noted otherwise, calculations are performed using Roe's flux solver and

both the bias parameter and threshold parameter are 'on', meaning that the stencil

is biased towards the preferred one, and a threshold hmit is set. The values of the

biasing parameters used in these calculations, referring to Equations 3.2.3 and 3.11,

are _ = 2 and e = 10 -2. Figure 3.1 illustrates the spurious oscillations observed

with the 3rd order ENO scheme for a case in which the pressure ratio across the

shock is 10.333 and the shock is moving to the left at a speed of 0.05. Figure

3.1 shows the pressure and entropy distributions in the duct after the shock has

moved 15 percent of the duct length. Entropy is measured by the quantity s = _.

Although there were no oscillations at the shock in the initial shock position,

once the shock begins to move, spurious waves develop in the flow solution. The

oscillation is seen primarily in the entropy wave; the pressure wave is relatively

unaffected.

The spurious error is due to the discrete motion of the shock moving through

the mesh. When the shock is located at a cell interface, it is extremely thin. As it

moves through the cell interior, it smears out, weakens in strength, and entropy and

pressure waves convect downstream. If the "shock passing frequency" is defined as

the frequency associated with the shock passing through a cell,

(3.22)f,ho k=

where Az is the grid spacing, and us is the shock speed relative to the grid,

the wavelengths associated with the pressure and entropy waves, Ap and As, are

determined by
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Figure 3.1: Pressure and Entropy as Functions of Distance along Duct. Shock

Speed = .05; Shock Pressure Ratio = 10.33. Dashed line represents pressure. Solid

line represents entropy.

Av - (u2 + a2) _ (u2 + a2)Ax (3.23)
.[shock Us

u2 _ u2Ax (3.24)
,Xs - .[,hock us

where u2 and a2 are the downstream velocity, relative to the shock, and sound

speed, respectively. When adequately resolved on the mesh, the spurious pressure

and entropy waves measured in the numerical computations compare well with the

wavelengths )_v and A, described by the above equations. For example, the wave-

length A, of the entropy wave in Figure 3.1 is computed: As ,_ .550* .00195/0.05 ,_

.021. Inspection of Figure 3.1 verifies this result.

A series of calculations, for the same p2/Pl = 10.333 shock strength, illustrates
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the effect of shock speed on the behavior of the spurious oscillations. These calcu-

lations were performed on a 512-cell grid at a Courant number of 1.0. Figure 3.2

shows the entropy distributions in the tube after the shock has moved to the left

for a normalized time of 3.0 for shock speeds of 0.02, 0.05 and 0.15. For clarity, the

entropy distributions are offset by a constant value of 0.1. The entropy upstream

of the shock is 1.0. The wavelengths of the perturbations downstream of the shock

are consistent with Equation 3.24. The long wavelength disturbances at the lowest

shock speeds are only shghtly damped downstream of the shock, while the short

wavelength disturbances at high shock speeds are damped very quickly by the dis-

sipation in the scheme. This, of course, explains why these disturbances are not

seen when the shock speed through the mesh is comparable to the flow speed.

Figure 3.3 shows the pressure distributions in the tube after the shock has

moved to the left for a normalized time of 3.0 for shock speeds of 0.02, 0.05 and 0.15.

For clarity, the pressure distributions are offset by a constant value of 0.05. The

pressure upstream of the shock is approximately 0.027. Small perturbations are

visible in the pressure distribution downstream of the shock, and the wavelengths

of these perturbations are consistent with Equation 3.23. The long wavelength

disturbances at the lowest shock speeds are only slightly damped downstream of the

shock, while the short wavelength disturbances at high shock speeds are damped

very quickly by the dissipation in the scheme.

Effect of Shock Speed

Figure 3.4 summarizes the effect of the shock velocity relative to the grid on the

maximum amplitude of the spurious entropy. The ratio of the magnitude of maxi-

mum zero-to-peak entropy error amplitude to the jump in entropy across the shock
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Figure 3.2: Entropy as a Function of Distance along Duct and Shock Speed. Shock

Speeds = .02, .05, 0.15; Shock Pressure Ratio = 10.33.
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is plotted as a function of the ratio of the shock velocity (normalized by upstream

stagnation sound speed) to upstream Mach number. These calculations were per-

formed for a shock moving to the right at shock speeds from 0 to 5.0 on a 256

cell mesh. The spurious entropy amplitude is machine zero when the shock is sta-

tionary relative to the grid, increases to a maximum when .005 < _ < 0.1, and

decreases as the ratio of _ increases further.

Figure 3.5 summarizes the effect of the shock velocity relative to the grid on

the maximum amplitude of the spurious pressure. The ratio of the magnitude of

maximum zero-to-peak pressure error amplitude to the shock strength is plotted

as a function of the ratio of the shock velocity (normalized by upstream stagnation

sound speed) to upstream Mach number. These calculations were performed for a

shock moving to the right at shock speeds from 0 to 5.0 on a 256 cell mesh. The

results show that the maximum pressure amplitude is relatively independent of the

shock speed, and that the maximum error in the downstream pressure relative to

the shock strength is less than 0.15 percent for all of the cases studied.

Figure 3.6 shows the zero-to-peak pressure error at a location approximately

50 cells downstream of the shock. This figure shows that for faster moving shocks,

the amplitude of the pressure error is more rapidly damped. This is consistent

with the observations made regarding Figure 3.3, which relates the wavelength of

the spurious pressure with the shock speed.

Because the amplitude of the error introduced by a slowly moving shock is

manifest primarily in entropy, further discussion will focus on this flow variable.
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Figure 3.4: Effect of Shock Velocity on Spurious Entropy. Three shock strengths

are shown.

Effect of Shock Strength

Figure 3.4 also illustrates that the magnitude of the maximum spurious entropy

ampfitude is a function of shock pressure ratio. As the shock strength increases,

the magnitude of entropy error, relative to the static entropy jump, decreases. In

the weak shock case, M = 1.1, the spurious oscillations are close to 100% of the

static jump in entropy over a range of shock speeds. This is because for the weak

shock cases, the entropy jump across the shock is very small.

The absolute levels of maximum entropy error are actually orders of magnitude

higher for the higher Mach number flows. For example, at _ = 0.04, the absolute

levels of maximum entropy error are 6amaz = 0.00033, 0.0039, and .097 for Mach

numbers M = 1.1, 1.3, and 3.0, respectively.
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Effect of Courant Number

A sequence of calculations was performed with Courant numbers between 0.1 and

1.0 (the stability limit) to determine the effect of Courant number on the spurious

entropy. Neither the amplitude nor the wavelength of the spurious oscillations is

found to be sensitive to the Courant number. This is consistent with the results

reported by Roberts for flux-difference splitting schemes [2].

Effect of Stencil Biasing Parameters

In this section the effects of the stencil biasing parameters on the spurious entropy

are investigated. To illustrate the effects of these parameters on the algorithm,

Figure 3.7 shows a space-time diagram of the stencil used in the ENO algorithm

for four combinations of stencil biasing parameters: (a) threshold on, bias on, (b)

threshold off, bias on, (c) threshold off, bias off, and (d) threshold on, bias off. For

clarity, the space time diagrams are limited to the region near the shock, and the

total number of cells in the computations was reduced to 256. The shock is initially

located at z = .5 and moves with a velocity of .01 to the left. The upstream Mach

number is 1.3. For cases (a) and (d), the threshold is on, and a centered stencil

is used for the majority of the computational space. The centered stencil is the

linearly stable stencil in this case. Cells on either side of the shock use downwind

or upwind stencils as appropriate. For cases (b) and (c), the threshold parameter

is off, and there is a great deal more stencil shifting in the smooth regions of the

flow. It is interesting to note that the stencils in these two figures follow entropy

and acoustic wave paths downstream of the shock. The stencil traces for these

wave paths have slopes corresponding to acoustic and convecting wave speeds.
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Threshold on. 256 Cells.
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Effect of Mesh Spacing

The effect of the mesh spacing is illustrated by comparing Figures 3.8 and 3.9. The

results presented in Figures 3.8 and 3.9 are for a shock (upstream Mach number

is 1.3) moving to the left at a speed of u, = 0.01. The difference in the results

occurs because of the difference in discretization. A 256 cell mesh is used to

obtain the results of Figure 3.8, but a 1024 cell mesh is used to obtain the results

of Figure 3.0. The entropy distributions in Figures 3.9 and 3.8 are offset by a

constant of .0075 and the numerical values of entropy are removed from the vertical

axis for clarity. The difference between tick marks is .005. Refining the mesh

reduces the magnitude of entropy oscillation, and shows the effect of the biasing

parameters more distinctly. Each combination of biasing parameters has a unique

spurious entropy pattern. Case (a) is highly oscillatory, with multiple frequencies

per wavelength of the oscillation. Case (b) has the smallest amplitude of entropy

peaks. Case (c) has the fewest peaks per period of spurious oscillation, but the

amplitude of the largest peak is high. Case (d) has large entropy peaks as well

as multiple frequencies per oscillation. Although all of the results show significant

entropy error, the results obtained by biasing the stencil and turning the threshold

off (case (b)) provide the lowest amplitude of entropy error.

Another effect of the mesh spacing is the reduction in the wavelength of the

spurious entropy. In Figure 3.8, the wavelength of spurious entropy computed by

Eqn. 3.24 is )_, _ .34. Refining the mesh in Figure 3.9 reduces this wavelength to

_, _ .086. The number of points per wavelength of the spurious entropy wave is

the same for both computations, since _ is constant.
Um

Figure 3.10 is included to show the effect of the Osher flux solver on the spurious
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entropy. The result is shown only for case (b) because other cases provided similar

results. The effect of the Osher solver on the spurious entropy is to remove one

of the peaks (seen in the Roe solver results) in the entropy wave each oscillation

wavelength.

This section has illustrated numerical difficulties in computing slowly mov-

ing shocks. Although changes in flux computation, algorithmic parameters, and

Courant number were made in an effort to remove these spurious entropy waves,

they persisted.

Calculations of supersonic jet noise will often have shocks moving slowly relative

to the grid. Although the results presented thus far have shown that spurious

entropy exists in calculations with slowly moving shocks, it has also been noted

that spurious pressure waves are very small in amplitude.



64

3.3.4 Summary

The computation of slowly moving shock waves produces spurious, numerical en-

tropy. The spurious entropy is a function of the algorithm used in the calculation,

and, as seen by the modifications made to the ENO scheme, even slight changes

in a basic Mgorithm can produce marked changes in the structure of the spurious

entropy. It is interesting to note that this phenomenon has been observed by the

authors in implementing the MacCormack scheme, ENO schemes, and a matrix

dissipation Runge-Kutta scheme, and by others using flux vector splitting schemes

[4], flux-difference splitting schemes with Gudonov, Roe and Osher flux solvers [2],

and PPM methods [1]. Spurious entropy normalized by the entropy jump across

the shock decreases with increasing shock strength and increasing shock velocity,

but is insensitive to Courant number. The amplitude of spurious entropy pertur-

bations is relatively unaffected by the type of flux solver used, but the Osher solver

reduces the number of peaks in the spurious entropy wave form.

Because the amplitude of the spurious entropy wave is a function of the shock

speed relative to the grid, the obvious method of eliminating the spurious wave is to

move the computational grid with the shock during the calculation. Although this

is not difficult in one-dimensional problems, it is considered unreasonable for the

multi-dimensional problems of practical interest, and was not implemented during

the course of this research. Another approach to reducing the spurious entropy

is to increase the dissipation of the algorithm, as suggested by Woodward and

Collela. This was not implemented, because the added dissipation would affect

the acoustic waves as well as the entropy. Acoustic pressure waves seem to be less

sensitive to numerical errors generated by slowly moving shocks.



65

3.4 Economics of Higher-Order Schemes

The desired accuracy in a computational solutiondetermines whether it ismore

economical to use a second order scheme with many grid points or a high-order

scheme with fewergridpoints.Figure 3.11illustrateshow the costofimplementing

these algorithms,as measured by CPU seconds per time step,variesas a function

of the solutionerror. This figureis constructed in the followingmanner. The

quasi-onedimensional Euler equations arc solvedforthe nozzle problem described

in detailin Chapter 4. Grid refinement studiesfor the 2nd, 3rd, and 4th order

ENO algorithms are performed on a Cray-2 computer. For each successivelyre-

fined spatialdiscretization,the errorin Mach number is computed for a steady

isentropicflow in a converging-divergingnozzle.In addition,CPU time per time

step is measured for the solutionon each mesh. The relationshipsof error and

CPU time as functionsof grid spacing are then combined to construct the figure.

The symbols on Figure 3.11 representnumerical resultsfrom the grid refinement

studies.The linesare extrapolationsof the numerical resultsover the error range

of interest. Because the temporal and spatial accuracy properties are equivalent

for these algorithms, the trends presented in Figure 3.11 will be similar whether

the accuracy computations are performed on steady or unsteady flows. The error

in Figure 3.11 is measured in the Lx norm, defined by:

N

N

where M(x) is the exact value,/t)/(_)isthe numerical approximation, and N is

the number of discretevaluesin the numerical solution.

Figure 3.11 shows that when an errorof order 10-I isacceptable,the second
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Figure 3.11: Computational Time per Time Step as as Function of LI Error for

2nd, 3rd, and 4th Order ENO Schemes.

order scheme is more efficient than the fourth order scheme by almost an order of

magnitude. If, on the other hand, an error on the order of only 10 -6 is acceptable,

then the higher order schemes are an order of magnitude more efficient. It is

interesting to note that continually increasing the order of accuracy in a scheme

does not necessarily result in a significant reduction in CPU time, even at very low

acceptable levels of error. Figure 3.11 shows that for the ENO scheme, most of

the benefit is realized in moving from second to third order in the range of error

norms considered.

It should be noted that the results of Figure 3.11 are particular to the quasi-

one dimensional ENO algorithms used in this study. Figure 3.11 will not apply to

the implementation of all schemes, because the relative cost of obtaining high-order

accuracy for different algorithms will vary. However, the procedure for determining
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the relationship of computer cost as a function of acceptable error for different

algorithms will be the same.

3.5

3.5.1

Extracting Acoustics from Aerodynamic

Flow

Acoustics Defined

In order to be able to extract acoustics from an aerodynamic flow, it is important

to define the characteristics of the acoustic waves. For the purposes of this paper,

acoustic waves have the following characteristics:

(1). Acoustic waves propagate to the far field at the sum of the local velocity and

sound speeds.

(2). Acoustic waves are isentropic.

(3). Acoustic waves are small amplitude.

(4). Acoustic waves maintain constant power. Thus, the decay in pressure of acous-

tic waves corresponds to geometric spreading losses. This implies that acoustic

1 in three dimensional flows and _r in two dimen-pressure decays proportional to

sional flows; there is no decay in pressure amplitude in one-dimension. (Note that

these decay properties are valid when wave steepening is negligible. The spreading

characteristics of nonlinear waves are discussed in Whitham's text[24].)

These characteristics of acoustic waves can be readily measured in the far field

where the amplitudes of the acoustic disturbances dominate those of the "hy-

drodynamic" (non-propagating) disturbances; however, the application of these

definitions near the source become more difficult. In fact, separating the acoustic

disturbances from the hydrodynamic disturbances in the acoustic near field is not
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consideredto be possiblebecausethesequantitiesdo not exist independently [23].

Both hydrodynamicand acousticdisturbancesareheard by a nearfield observer,

but becausethe hydrodynamic disturbances decay more rapidly with distance from

the source than the acoustic disturbances, only the acoustic disturbances impact

the far field.

3.5.2 Requirements for Acoustic Calculations

The characteristics of acoustic disturbances determine the requirements of the di-

rect numerical simulations used:

(1). Highly-accurate. The small amplitude of the acoustic waves relative to the

underlying mean flow and the large distances the acoustic waves travel require

that the numerical scheme used is high-order accurate and/or uses a grid fine

enough to sufficiently resolve the acoustic waves. The disparity of length and time

scales typically of importance in acoustics makes accuracy a real issue, since small

scMes are often important and cannot afford to be filtered from the computationM

solution. In addition, boundary conditions must be accurately imposed.

(2). Large computational domain. Because acoustic disturbances are defined as

the propagating portion of the unsteady pressure field, calculation of acoustics

requires a large computational domain. The size of the computational domain

must be large enough that the pressure field can be measured at least one acoustic

wavelength away from the source. Acoustic wavelengths are often much larger than

the source(s) which generate the sound.

(3). Long time solution. Long time calculations are necessary to compute at least

one period of the far field sound if the acoustic signal is periodic. For non-periodic

signals, seven to ten cycles of the lowest frequency are required for reasonably accu-
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rate spectral estimates. (For a good description of accuracy in spectral estimates,

see Hardin's text [25].)
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Chapter 4

Interaction of Sound with a

Shock Wave

4.1 Introduction

In this chapter the interaction of a sound wave with a shock is considered. This

study is meaningful because it models the planar oscillation of a shock wave, and

shock waves in real aerodynamic flows are inherently unsteady.

In the first three sections, shock capturing formulations of the MacCormack and

ENO schemes are apphed to the governing equations of fluid dynamics for time

dependent, shocked flow through a nozzle. The emphasis of these computations

is to predict numerically the amplification of sound by a shock and to compare

the solutions provided by the different algorithms. Validation of numerical results

is always important, but is particularly important for these calculations because,

although high-order schemes ensure high-order accuracy in smooth regions of the

solution, they necessarily reduce to first order at the shock. Hence, accuracy is

73
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lost in the vicinity of the most important region of the solution: the sound source.

Since a hnear theory exists for this problem, numerical results are validated for the

case of small amphtude acoustic waves incident on the shock. Much of the content

in the first three sections was originally pubhshed by the author [11, but is included

here for completeness, with permission from the pubhsher.

Section 4.4 includes an analysis of the disturbance energy associated with a

sound wave passing through a shock. This analysis provides insight into the source

of disturbance energy generated at the shock.

Analysis

Linear Theory

Within the context of hnear theory, only entropy and acoustic waves may exist in a

quasi-one dimensional flow [2]. In a fully linear flow, these waves are independent.

However, when the flow field contains nonhnear features such as shock waves, the

nonhnearity acts as a coupling mechanism between the hnear waves. Thus, the

presence of shock waves in a flow field makes it possible for a sound wave incident

upon a shock to suddenly change its amphtude and generate an entropy wave.

The physical explanation for this phenomenon is as follows. Entropy is gener-

ated across the shock. For a steady flow, this change in entropy is independent of

time. However, when a sound wave impinges upon the shock, the shock begins to

oscillate, the change in entropy is no longer constant, and a periodic entropy wave

is generated which convects downstream at the local flow velocity. In addition, the

impinging sound wave is amplified.

Linearized analyses of the interaction of small disturbances with shock waves
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have been made independently by Blokhintsev [3], Burgers [4], Moore/5J and Powell

[6]. Landau and Lifschitz [7] report that the ratio of transmitted to incident sound

waves determined by linear theory is:

6p2 (M1 + 1) 2(7- 1)M1M_(M}- 1)- (M1 + 1)[(3'- 1)M} + 2l

6p1-(M2+l)* 2(3"-l)M_(M2-1)-(M2+l)[(3"-l)M_+2] (4.1)

where M1 is the Mach number upstream of the shock (henceforth called the pre-

shock Mach number) , M2 is the Mach number downstream of the shock, and 3' is

the ratio of specific heats of the fluid. Equation 4.1 as well as a similar expression

for the ratio of static pressures, _ are plotted on Figure 4.1 for the ratio of specific

heats, 3' = 1.4. Note that Equation 4.1 predicts an amplification of the acoustic

signal as it propagates through the shock wave for all pre-shock Mach numbers.

This is not surprising, since the mean flow pressure also increases across a shock,

but it is interesting that the ratio of the perturbation pressures, _ is not the
6pl

same as that for static pressures, _
Pl"

4.2.2 Riemann Analysis

The results of the previous section are based on linear theory in which disturbance

amplitudes are assumed to be small. To determine the range for which the linear

result is valid, one may compute the ratio of disturbance pressures across the shock

by considering the iterative solution to the Riemann problem. The Pdemann anal-

ysis is performed by considering the space-time diagram illustrated in Figure 4.2.

Initially a steady shock wave separates states 1 and 4. At some time At, a distur-

bance is introduced upstream of the shock which moves the shock and produces

acoustic and entropy waves downstream. Knowing the initial states 1 and 4, and

the incident perturbation amplitude, and utilizing the facts that acoustic waves
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Figure 4.1: Ratios of Static and Perturbation Pressures as Functions of Pre-Shock

Mach Number.

are isentropic and entropy waves introduce no pressure perturbation, the ratio of

the perturbed states 2 and 1 may be found by numerical iteration. For an incident

sound wave of pressure perturbation 5Pl = epl sinwt, the ratio _ is of interest

and is compared with the hnear theory result in Figure 4.3 for several perturbation

amphtudes and shows excellent agreement for perturbation amplitudes less than

e = 10 -1 . (Results for e < 10 -2 are visually indistinguishable from the Blokhintsev

hne.) Even for perturbation amplitudes on the order of ¢ = 1.0, there is only a 10

per cent difference between the solutions at M = 3.

Combining the expression for _ with the Rankine-Hugoniot shock jump re-6pl

lations, one may calculate similar expressions for the fluctuations in density and

entropy downstream, as well as the shock velocity. These relations are plotted in

Figures 4.4 and 4.5. Figure 4.4 shows the relationship between the ratios of pertur-
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Figure 4.4: Perturbation Ratios as a Function of Upstream Mach Number.

bation pressure, entropy and density perturbations across the shock. These ratios

were computed using a perturbation amplitude of e = 10 -3. This figure shows that

the pressure fluctuation is most significant over a wide range of Mach numbers. The

entropy fluctuations downstream of the shock are very small; the quantity _ is on

the order of c, except near M = 1 where As ---, 0. Figure 4.5 shows the difference

between the upstream Mach number and the shock Mach number as a function of

the upstream Mach number for several perturbation amplitudes. The linear theory

results are presented in lines with no symbols, while the results obtained by using

obtained by the Riemann analysis are presented with dots. As expected, the

results obtained for small perturbations (e < 10 -1) are indistinguishable from the

results of the Riemann analysis, while there is a significant difference in the results

obtained for the large perturbation (e = 1.0). The shock motion increases with

upstream Mach number and perturbation amplitude.
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Model Problem

Governing Equations

The equations governing the unsteady quasi-one dimensional flow in a nozzle are:

OU OF

o--7+ = Q (4.2)

where U is the vector of conserved variables [p, pu, pe] T, F is the flux vector,

[puA, (pu 2 + p)A, (pe + p)uA] T, where A is the area of the nozzle, and Q is a

source vector due to the area variation, [0, ,iAPa-_-, 0] T" Standard notation is used;

p is density, u is velocity, e is total energy per unit mass, and p is pressure.

4.3.2 Nozzle Shape

Consider a nozzle which is converging-diverging, and designed for a hnear Mach

number distribution when flow is isentropic and fully expanded to produce super-
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Table4.1: Machslopesandcorrespondingrange of pre-shock Mach number.

Mach Slope Pre-Shock

a Mach No.

1 1.4 to 1.8

2 2.0 to 2.6

sonic velocity in the diverging section. The Mach number at the nozzle inlet is

M = .8 and varies as a function of distance along the nozzle length:

M(_:) = ax + .8, 0 <_ x < 1 (4.3)

where x is the distance along the nozzle, normalized by the nozzle length. Two

Mach slopes are used to facilitate consideration of a range of practically significant

pre-shock Mach numbers and keep the shock close to the center of the nozzle

diffuser. The values of Mach slope, a, used in the calculations presented here and

the corresponding pre-shock Mach numbers are presented in Table 4.1.

A sketch of a nozzle with a Mach slope of 1 is shown in Figure 4.6.

4.3.3 Governing Equations and Boundary Conditions

The unsteady, compressible, inviscid flow in a nozzle of varying cross sectional area

is governed by the quasi-one dimensional Euler equations 4.2. These equations

are solved in conservation form so that shocks are automatically captured. Total

pressure and entropy are prescribed upstream of the shock at the nozzle inlet, and

static pressure is prescribed downstream of the shock at the nozzle exit plane. Flow

quantities are normalized by the upstream stagnation conditions and the nozzle

length, L. Finite wave conditions developed by Atkins and Casper [8] are employed

at the boundaries.
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The first step in numericallymodelingthe interaction of a soundwavewith a

shock is to determine an accurate steady flow solution throughout the nozzle. To

obtain sufficiently accurate unsteady results, the steady state residual is converged

to several orders of magnitude smaller than the smallest perturbation amplitude

to be investigated. Steady flows with residuals only one or two magnitudes smaller

than the perturbation amplitude may introduce spurious entropy at the inflow

boundary in the unsteady calculation.

To induce unsteady flow through the nozzle, the inflow boundary condition is

perturbed sinusoidally and isentropically. The pressure perturbation is prescribed

as :

6p=e p sinwt (4.4)

where e and w are the normalized amplitude and frequency of the perturbation, and

p and t are the normalized pressure at the inflow boundary and time. The pressure

perturbation introduces an acoustic wave at the nozzle inlet which propagates

downstream at a velocity equal to the sum of the local velocity and sound speed.

A range of perturbation amplitudes is selected so that linear as well as nonlinear

waves can be investigated. The time dependent features of the flow are computed,

and the effect of the shock on the sound wave is observed.

4.3.4 Algorithms

In order to admit discontinuous solutions, shock capturing formulations of the Mac-

Cormack and ENO algorithms described in Chapter 2 are employed for the com-

putations. Therefore, shock fitting methods which explicitly invoke the Rankine-

Hugoniot jump relations across a shock are not required.
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4.4 Results

4.4.1 Unsteady Calculations

The results presented in this section are for the case of perturbation amphtude,

e = .01, and a frequency, w = 60, which corresponds to an approximate wave

number of 5.25. The calculations are performed on a grid of 128 cells, which

corresponds to approximately twenty-four points per wavelength. The nozzle back

pressure is prescribed so that a shock appears at z = .6 in the steady solution. For

a nozzle with a Mach slope a = 1, this corresponds to a pre-shock Mach number

of 1.4.

Figure 4.7 shows the perturbation pressure, density, and velocity in the nozzle

at a normalized time of _', and compares the results provided by the MacCormack

and 2nd, 3rd, and 4th order ENO schemes. Perturbation quantities are determined

by subtracting the mean flow quantities from their time dependent counterparts:

@(_,t) = v(_,t)- v(_,o)

@(_,t) = p(_,t)- p(_,o)

_(_,,t) = _(x,t)-_(_,o)

(4.5)

The following are observations of the numerical results: The MacCormack and

3rd and 4th order ENO schemes do an excellent job of predicting the perturbation

pressure upstream of the shock, where the flow is smooth. The second order ENO

scheme, which behaves similar to a TVD scheme because it has only second order

interpolation, has a shght leading phase error. At the shock, the ENO schemes do

a better job of capturing the shock in fewer cells. The flow solutions differ more

significantly downstream of the shock. The phase shift error is amphfied and the
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Figure 4.7: Pressure, Density and Velocity Perturbations Along Nozzle Length.
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wave amphtude is dissipated in the 2nd order ENO results. The MacCormack

solution is shghtly damped relative to the 3rd and 4th order ENO solutions, and

has spurious oscillations on portions of the perturbations close to the shock. The

difference in the solution between the third and fourth order ENO schemes is not

graphically perceptible on this scale. These results show that all the algorithms

apphed to this problem do a good job of computing the perturbation quantities

in the nozzle. The 3rd and 4th order ENO schemes provide the best solutions

because they have no oscillations at the shock and less damping downstream. The

cost of running high-order ENO is higher than second order ENO or MacCormack,

however, and the economics of high-order schemes is discussed in Section 2.4.

4.4.2 Effect of Mach Number

Sound amphfication by a shock wave is highly dependent upon the pre-shock Mach

number. To illustrate this numerically, Figures 4.8 and 4.9 show a sequence of

pressure perturbations moving through the nozzle for pre-shock Mach numbers

of 1.58 and 2.36. A small amphtude perturbation of e = 10 -5 is introduced at

the inflow boundary. The perturbation is seen to maintain its sinusoidal shape

throughout the nozzle. The amphtude decreases as the flow expands in the nozzle

upstream of the shock. At the shock, it is amplified as the flow is compressed, and

continues to increase gradually as the flow is compressed further. It is clear that

the amphfication of the sound wave is much more significant at the higher Mach

number.



86

5.0

5p x 10 s
2.5

0.0

-2.5

-5.0

-7.5
i i i

0.00 0.25 0.50 0.75 1.00

X

Figure 4.8: Several Snapshots in Time of Pressure Perturbation Along Nozzle.

e = 10 -s, M1 = 1.58.

10 e5.0 I5p x

2.5 l

0.0
[

-2.5 K

-5.0

-7.5
I i i i i i i I [ i i i i i i i i i J

0.00 0.25 0.50 0.75 1.00

X

Figure 4.9: Several Snapshots in Time of Pressure Perturbation Along Nozzle.

e = 10 -s, M1 = 2.36.
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Table 4.2: Pre-shock Mach number and minimum cells per wavelength for the

calculations presented in this paper.

Pre-Shock Minimum

Mach No. Cells/Wavelength

1.4

1.58

1.7

2.0

2.36

2.6

26.92

26.18

25.75

23.52

22.50

22.13

4.4.3 Comparison of Numerical Results with Linear

Theory

To quantify the effect of Mach number on the perturbation amplification and val-

idate the computations, the numerically determined pressure perturbation ampli-

tude ratio is compared in Figure 5 with the linear theory over a range of Mach

numbers, and for two perturbation amplitudes: e = 10 -5 and e = 10 -2. The first

amplitude is small enough to be well within the validity of the linear theory. The

second amplitude approaches the limit of linear theory validity, particularly for the

lower Mach numbers where the shock is weak and may undergo large excursions.

The normalized acoustic perturbation wavenumber at the inflow boundary is set

to 4. Results for Mach numbers between 1.4 and 2.6 are presented here. The

computations have from 22 to 27 cells per wavelength, depending on the particular

cases being calculated. Table 4.2 below lists the cells per wavelength for the cases

presented in this paper.

Figure 4.10 compares the numerical results with linear theory. The 3rd order

ENO scheme and linear theory match extremely well for the very small amplitude
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Figure 4.10: Pressure Perturbation Ratio as a Function of Pre-Shock Mach Num-

ber.

perturbation, _ = 10 -5. The differences between numerical solutions and linear

theory become more pronounced at the higher perturbation amplitude, _ = 10 -2.

Some discrepancy between the linear theory and numerical results is not surpris-

ing since nonlinearities may become important at this perturbation amplitude.

Because the shock in the MacCormack solution is spread over several cells, deter-

mination of the ratio _ is more difficult, particularly when the shock is located

close to the end of the nozzle. This is why no MacCormack result is shown for

M= 2.6.

4.4.4 Energy Analysis

The previous sections have shown that according to linear theory and numerical

computation, sound pressure is amplified as a sound wave passes through a shock.
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This section will address the issue of whether or not acoustic energy is generated

in the interaction process.

To answer this question, consider Myers' energy corollary [9]. Myers' energy

corollary is an exact equation governing the transport of energy associated with an

arbitrary flow field. This corollary allows for a description of the acoustic energy

in general situations where the linear description of energy is inadequate. Clearly,

with the highly nonlinear flow field associated with sound-shock interaction, such

an approach is warranted here.

For a one-dimensional flow in which viscous effects are negligible, Myers' corol-

lary reduces to:

OE cqW

o---i+ o_, D (4.6)

where the disturbance energy density is defined

E = 1_p(,,2_ _) + p0-0.0,0 - u) - pT0(8- 80)- (p- r0) + p(h - h0) (4.7)
A 2

where A is the cross sectional area of the duct, T is the absolute temperature, h is

the enthalpy, 8 is entropy, p is density, p is pressure, u is velocity. The subscript o

represents the undisturbed state. The disturbance energy flux is

W

-2-= (p=- p0=0)[h- h0- To(8- _o)]+ p0=0(T- T0)O- 80) (4.s)

and the disturbance energy source is

D

= -(pu - pouo)(8 - so). VTo - (s - 8o)pouo" V(T - To)
(4.9)

For the one-dimensional sound-shock interaction, only acoustic and entropy

modes are present (vorticity requires three dimensions). Thus, the energy density
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can be divided into two types of energy, acoustic and entropy, as:

1 2 Oh[E. = _e(,_ - _g)+ m,o(uo - u)- (p- vo)+ oN (p - po)
$

and

where

and

(4.10)

cOhp _ _1 zzAOs 3' lp , s "¢ (4.12)

Oh -1 1

_pp =p' s' (4.13)
$

for an ideal gas.

It is instructive to examine the energy components and energy source terms in

space time to see how these quantities change during the sound-shock interaction

process. These quantities presented in Eqns. 4.10, 4.11 and 4.9 are shown in

Figures 4.11 -4.13 for the case where the Mach number upstream of the shock, M1 =

3, the acoustic disturbance amplitude, e = .1, and 512 cells are distributed along

the duct length. For these calculations, the shock is initially at z = .4. The sound

disturbance enters the duct at t = 0 at the duct inlet and propagates downstream.

At a time of t _ 0.13 the sound wave hits the shock. After the interaction,

Figure 4.11 shows that acoustic energy is present downstream. The amplitude

of the sound energy downstream of the shock is higher than the energy upstream,

indicating that acoustic energy is generated by the sound-shock interaction process.

It is comforting to note that the slope of the path of the sound wave in space-time

increases after interaction with the shock. The inverse of the slopes before and

after the shock corresponds to the quantities ul + cl and u2 + c2, respectively,

[Oh I (s-so)-To(s-so)] (4.11)E,=p -_sp
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where the subscripts 1 and 2 refer to the states upstream and downstream of the

shock.

Figure 4.12 shows the component of entropy energy in space-time. Clearly,

because the sound wave is by det_nition isentropic, there is no disturbance entropy

upstream of the shock. After the sound wave hits the shock at t _ 0.13, however,

entropy energy appears downstream. Thus, entropy energy is generated during

sound-shock interaction. The inverse slope of the path of the disturbance entropy

corresponds to the downstream convection velocity, as expected. Figure 4.13 is

interesting because it portrays the variation in the source term of Eqn. 4.0, and

provides insight into the nature of the generation of disturbance acoustic and en-
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tropy energy downstream of the shock. The source term is zero except along the

shock wave for _ _ 0.13. Thus, the shock wave is the source of the disturbance en-

ergies downstream. Inspection of Eqn. 4.9 indicates that the source of disturbance

energy is the transfer of energy from the mean flow. This transfer can occur in the

presence of a temperature gradient with fluctuations in entropy and momentum,

and with fluctuation of entropy and temperature. Note that the source term is

zero when the fluctuation in the entropy is zero. This implies that the disturbance

energy source is related to the shock motion.
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4.5 Concluding Remarks

This chapter describes a numerical investigation of sound amplification by a shock

wave. The MacCormack and 2nd, 3rd, and 4th order ENO schemes are employed

to compute the time dependent shocked flow field in a converging-diverging nozzle.

The flow is disturbed by introducing a sound wave at the inflow boundary. All of

the schemes are shown to do a good job in predicting the perturbation amplitude

and phase speed in the nozzle, especially in the supersonic, smooth portion of the

flow. The high-order ENO schemes provide the best overall results because the flow

around the shock does not contain spurious oscillations and the flow downstream

of the shock shows tittle dissipation.

The numerical results are compared to the finear theory. Linear theory vali-

dates the numerical solution for small perturbation ampfitudes. Numerical results

for the larger perturbation amplitude also compare well to the finear theory, indi-

cating that the hnear theory has a wide range of applicability in predicting sound

amplification by a shock.

Analysis of the equation governing the perturbation energy shows that distur-

bance energy is generated at the shock. The source term for this energy goes to

zero as the entropy fluctuation goes to zero. This indicates the importance of shock

motion on the generation of disturbance energy.
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Chapter 5

Interaction of a Vortex Ring with

a Shock Wave

5.1 Introduction

In this chapter the interaction of a vortex ring with a normal shock wave is consid-

ered. The study of this interaction is meaningful because it models a fundamental

mechanism of sound generation in supersonic jets: the interaction of turbulence

with shock waves.

Early research on shock vortex interaction focused primarily on experimental

studies ([1], [2], [3]) and the development of predictive linear theories ([4], [5], [6] )

that were compared with experimental results. Ribner suggested that the study of

the interaction of a vorticity wave with a shock would provide useful information

regarding the sound generated by turbulence in supersonic jet flows [4]. Ribner

studied the problem analytically and developed a linear theory which described

sound generated by vortex-shock interaction ([4], [6]). At about the same time,

96
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Moore studiedthe interactions of a variety of plane wave disturbances with shocks

in an unsteady reference frame [5].

Pao and Salas were the first to study the interaction of a shock wave and a vortex

numerically [7]. This study investigated the interaction of a columnar vortex with

a normM shock wave by solving the Euler equations using MacCormack's scheme

with a shock-fitting numerical technique. SMas, Zang, and Hussaini [8], Hussaini,

et.al. [9], and Kopriva et. al [10] applied spectral methods with shock fitting

methods to the same problem. The use of spectral methods provided increased

accuracy of the solution, but were limited to weak shock-vortex interaction cases.

Meadows, Kumar and Hussaini [11] studied the interaction of a columnar vortex

with a shock wave using a shock capturing scheme. Shock-capturing proved to

be beneficial because strong shock-vortex interaction cases which result in the

formation of secondary shocks, could be studied readily. The authors noted that

in order to provide a quantitatively accurate representation of the acoustic wave,

improved downstream boundary conditions and higher-order numerical schemes

were required. Casper [12] then investigated the shock-vortex interaction problem

with a high-order ENO scheme and found that higher accuracy greatly improved

the resolution of the acoustic wave downstream of the shock.

The work cited above has been for columnar vortex-shock interactions. This

study is believed to be the first for the interaction of a vortex ring with a shock

wave. The interaction of a vortex ring with a shock more closely models the

interaction of turbulence within the shear layer with shock waves present in the

plumes of imperfectly expanded axisymmetric supersonic jets.
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Figure 5.1: Vortex Ring - Shock Interaction.

5.2 Model

5.2.1 Overview

The calculations presented in this section are designed to model the interaction of

a vortical structure within the supersonic portion of the shear layer with a shock

wave. The core size is small relative to the size of the ring in these calculations,

primarily because of numerical considerations. Because the shear layer in a jet

spreads with increasing distance from the nozzle exit plane, a vortex ring with

a small core models the interaction of disturbances in the shock cell closest to

the nozzle lip. When results are presented in dimensional units, the variables are

dimensionalized with ambient stagnation sound speed and atmospheric pressure;

thus, the calculations performed most closely model disturbances interacting with

the first shock cell of an overexpanded nozzle, illustrated in Figure 5.1.

The strength of the vortex is chosen to correspond to the observed strengths of
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turbulent fluctuations in the jet shear layer. Experimental observations indicate

that an appropriate level of velocity disturbance is on the order of three percent

of the mean flow velocity [22]. The vortex strength chosen for the majority of the

calculations presented here (M1 = 1.5) has a velocity perturbation (defined as the

ratio of the vortex core velocity to the upstream mean flow velocity) of 6.8%.

Although imperfectly expanded jet flows typically contain systems of oblique

shocks, this model uses the interaction of a ring vortex with a normal shock wave.

This is a reasonable approximation because the obhque shocks tend to curve up-

stream with increasing distance from the jet centerhne and are approximately nor-

real upon termination in the shear layer [22].

The sense of the vortex rotation is taken to be counterclockwise for the majority

of the calculations because the velocity decreases with increasing distance from the

jet axis, resulting in vorticity of a positive sense. Some results are shown for the

case of a clockwise rotating vortex in Section 5.5.

5.2.2 Geometry

The geometric model of the interaction of a ring vortex with a shock wave used in

the computations is illustrated in Figure 5.2. A vortex ring is introduced upstream

of the shock wave. The vortex ring is characterized by its strength, F, its core

radius, ,',, and the distance from the axis of symmetry to the vortex filament, r0.

The shock is characterized by the Mach number of the flow upstream of the shock,

ml.
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Figure 5.2: Vortex Ring - Shock Interaction.

Governing Equations

The equations which govern the interaction of a vortex ring with a shock wave,

neglecting viscous effects, are the Ruler equations of gas dynamics in axisymmetric

coordinates:

where

OrQ c%F OrG

0---_- + _ + a--_-- = H (5.1)

Q = {p, pu, pv, pc} T (5.2)

F = {p,,,p_2+ p,p,_,,,(pe+ p),_}T (5.3)

G = {pv, pvu, pv 2 + p,(pe -t- p)v} T (5.4)
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H = {0,0,p, 0} T (5.5)

and standard notation is used for the flow variables. Thus, p is density, u and v

are the velocity components in the axial and radial directions, e is total energy per

unit mass, p is pressure, x is the axial position, and r is the radial distance from

the axis of symmetry.

5.2.4 Boundary Conditions

Conditions are prescribed at the inflow and outflow computational boundaries to

establish a shock with the specified strength at x = 7. The boundary condition

along the axis of symmetry is prescribed by requiring that the fluxes across the

axis are zero. The method of prescribing the boundary conditions is described in

[13].

5.2.5 Solution Procedure

The calculation is performed in two steps. First, a steady, shocked flow is es-

tablished with the flow parallel to the axis of symmetry. Next, a vortex ring is

introduced to the flow field 7 core radii upstream of the shock at T = 0. All flow

variables are normalized with respect to the static pressure and density upstream

of the shock, and the size of the vortex core radius. The vortex ring then convects

downstream, passing through the shock wave. After this interaction, significant

changes occur downstream of the shock wave. Sound, vorticity, and entropy are

generated as the vortex interacts with the shock wave. The primary focus of this

work is on the acoustic waves generated by the interaction.
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5.2.6 Vortex Model

A model of the ring vortex is required to introduce appropriate perturbations

in velocity and pressure to the flowfield as an initial condition. The vortex is

introduced at the initial time t = 0, and at subsequent times the Euler equations

determine the entire flow field - including the vortex. At all subsequent time steps

the Euler equations are satisfied to a level of error corresponding to the truncation

error of the ENO algorithm, which is third order accurate in space and time.

The initial condition prescribed for the vortex is the classical toroidal vortex of

Lamb [14], augmented with a solid body core. The derivation of the velocity and

pressure equations is provided in Appendix B.

Limits of the Vortex Ring Model

The cross section of the vortex ring core is approximately circular when the vortex

filament is 170 core radii away from the axis of symmetry [16]. When the vortex

core radius increases relative to the ring radius, the degree of circularity decreases,

until the vortex becomes HiU's vortex [16], and the streamlines become oblong and

flatten close to the axis of symmetry. To closely approximate the vortex ring with

a circular core, the vortex filament is located 125 core radii away from the axis of

symmetry unless otherwise noted. The small size of the vortex core radius relative

to the ring radius reasonably approximates the size of a turbulent structure within

the supersonic portion of the shear layer near the first shock cell.

5.2.7 Vortex Parameter Modeling

The parameters of the vortex ring which model the physical jet turbulence/shock

interaction will be described here. The first parameter of interest is the vortex
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strength. The circulation is typically considered to be a measure of the vortex

strength. For the vortex ring, the circulation is related to the geometrical param-

eters and induced velocity, V, according to [16]

4V_rr0

r _ In - 1-" (5.6)
rc 4

The next parameter of interest is the ratio of the core radius to the ring radius,

2. The core radius models the size of the disturbance in the supersonic portion of
rO

the mixing layer interacting with the shock wave, while the ring radius models the

radial distance between the jet axis of symmetry and the inner boundary of the

turbulent mixing layer. Obviously, this ratio is a function of distance downstream

from the jet exit plane.

5.2.8 Vortex Preservation Study

An important feature of this calculation is the accurate representation of the source

of the sound generation: the interaction of a vortex with the shock. To ensure that

the vortex is adequately resolved in the calculation, the time history of the mini-

mum pressure within the vortex is tracked. A series of computations is performed

where the vortex ring convects over grids of various resolutions. It was found that

while convecting on a uniform mesh with 10 cells per core diameter, the minimum

pressure varies by a maximum of 0.035% over the time it takes the vortex to travel

7 core radii, which is the initial distance of the vortex from the shock. This level

of numerical error is considered to be acceptable, and so this grid resolution was

held fixed for all the computations.
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5.2.9 Computational Grid

As mentioned in the previous section, it was found that a grid having 10 cells

per vortex core diameter was sufficient to adequately resolve the vortex in the

computation. This grid resolution is used in the fine uniform grid in the region

-6 < _c < 85 and 72 < r < 178, where Ax = ZXr = 0.2. However, it is computa-

tionally prohibitive to use a uniform mesh with such fine resolution throughout the

entire computational domain. The computational domain is required to be large

enough such that at least one wavelength of the acoustic disturbance is contained

in the calculation. This allows accurate measurements to be made in the acoustic

far field so that computations to determine the acoustic energy level can be made.

In addition, the computational domain must also be large enough that once the

acoustic wave has passed a far field observer point, the wave has time to go through

one period of its oscillation without being contaminated by errors introduced by

the boundaries. Thus, in the calculations shown here, the computational grid is

uniform over the range of the acoustic source interaction and sound wave prop-

agation through at least one acoustic wavelength. The grid is then stretched to

the boundaries using a hyberbohc sine function. The grid contains 481 cells in the

axial direction and 556 cells in the radial direction. Every 15th cell of the grid is

shown in Figure 5.3.

It is important to note that this grid resolves the generated acoustic waves.

Prehminary test calculations performed over Mach number range 1.1 < M <

1.7 cover an acoustic peak-to-valley wavelength range of 2.5 _< A <_ 3.0. Thus,

the minimum resolution of the acoustic wave is 12.5 points per peak-to-valley

wavelength. The actual number of points per wavelength is at least twice this
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Figure 5.3: Standard grid used in calculations. Only every 15th cell is shown.

number. Thus, the acoustic wave is well resolved.

It is also important to note that there is another length scale of possible interest

in this problem, which is not well resolved on this grid. During the interaction of

the vortex with the shock, the shock wave begins to move. For typically small vor-

tex strengths, the shock displacement is small. In fact, for many of the calculations

performed during the course of this research, the shock moves through the distance

of only one cell. Because further grid refinement proved to be prohibitively expen-

sive and one-dimensional calculations of sound-shock interaction provided results

which matched linear theory well without resolving the shock motion, the grid was

not refined further.
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5.3 Typical Interaction-Counterclockwise

Vortex

5.3.1 Overview

A typical interaction of a counter-clockwise (CCW) rotating vortex with a shock

wave is is described in this section. In the calculations for this case, the Mach

number upstream of the shock is M = 1.5, and the vortex strength is F = .75.

In the contour plots shown in this chapter, contours are shown for a part of the

computational domain near the interaction point of the vortex core and the shock

wave. Because of the axisymmetry, only a single cross-section of the solution will

be shown in the results which follow. All the results presented are within the

uniform grid region of the computational grid so that effects of grid stretching are

not present in the results. The contours are computed on a grid which is five times

as coarse as the computational grid. Note that the contour range is kept constant

for each plot so that relative values of the perturbation quantities at different time

levels can be compared. In these calculations, a unit of time is defined as T = rc/ul

where Ul is the upstream flow speed; thus T represents the time it takes the vortex

core to move 1 radius in the flow upstream of the shock.

Contour plots of the flow variables are shown for three selected times: T = 0,

T = 8, and T = 50. At time T = 0, the vortex is upstream of tile shock. At

T = 8 the most upstream edge of the vortex core is approximately aligned with

the shock; and at T = 50, the vortex is approximately 30 core radii downstream

of the shock.
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5.3.2 Pressure

Figure 5.4 shows the change in pressure from the mean state. The only perturbation

in pressure at T -- 0 is the decrease in pressure at the vortex core. As the vortex

begins to interact with the shock, additional pressure perturbations are generated

downstream of the shock. At T = 8 high amplitude pressure disturbances are seen

just downstream of the shock. As time passes, these pressure disturbances travel

downstream more rapidly than the vortex. Figure 5.5 shows a plot of the position

of the peak pressure (in radii from the vortex filament) as a function of time (in

periods). The plot shows a linearly increasing change in the position of the pressure

disturbance as a function of time, which means that the pressure disturbance is

traveling at a constant speed relative to the vortex. The slope of this curve is found

AR
to be _ = 0.77 core radii per period, the sound speed downstream of the shock.

(The velocity 0.77 core radii per period is equivalent to a velocity normalized by

the sound speed upstream of the shock of 1.15. The ratio of the sound speeds

across the shock is 1.15 for an upstream Mach number of 1.5. ) Thus, the pressure

disturbances are traveling at the sound velocity relative to the mean flow, satisfying

one of the defining features of acoustic waves.

The structure of the acoustic wave is readily apparent at T = 50 in Figure

5.4. As predicted in linear theory, the sound wave is quadrupole in nature: the

acoustic wavefront is comprised of alternate compression-rarefaction-compression-

rarefaction fronts.

Pressure perturbations along radii extending from the vortex center at 10 degree

increments are shown in Figure 5.6. This figure quantifies the change in amplitude

as a function of the angle from the horizontal, and shows that the peak-to-peak
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Figure 5.4: Contours of pressure perturbation downstream of the shock st T = 0,

T = 8, and T = 50.

pre,ure amplitude is maximum at 0 = 50 and 0 = -55 degrees. From this figure,

the valley-to-peak measure of the wavelength of the pressure disturbances is seen

to be )_ _. 2.8.

Figure 5.7 shows a carpet plot of the pressure levels downstream of the shock

at T = 50. The image is processed with Fast [24] and is shown at an angle to

clarify the detailed features of the flow field. Note the resolution of the cylindrical

acoustic wave, and the complex system of pressure waves between the shock and

the cylindrical acoustic wave front.

Figure 5.8 shows the product of the square root of the distance the acoustic

wave has traveled (relative to the vortex core) and the peaJk pressure amplitude

along a line extending from the vortex core at 60 degrees from the horizontal

passing through the vortex filament as a function of distance from the vortex

filament. The product v_es significantly ,_t small distances from the core, which

is synonymous with early time and proximity to the source, but flattens to an

almost constant level at larger distances. This shows that in the far field of these
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Figure 5.5: Position of the peak pressure perturbation (in core radii from the vortex

filament) as a function of time (in periods). The slope of the curve is the sound

speed downstream of the shock.

calculations, the sound pressure decays as _r, which is characteristic of geometrical

spreading in two dimensions, commonly known as cylindrical spreading. Although

these calculations are performed in an axisymmetric coordinate system which, in

general, should allow for three dimensional geometrical spreading of the sound, the

presence of the shock wave prohibits the spreading upstream. In realistic flows,

where viscosity plays a role in the fluid dynamics, shock waves are finite in extent.

In these flows, cylindrical spreading would occur close to the shock wave, while

spherical spreading (with p decaying as _) would occur in the far field. Hardin [23]

has shown that in cylindrical coordinates, the sound decay rate is a function of the

source size to the distance from the source to the observer. Later it will be shown

that the interaction of the vortex ring and shock wave produces a disturbance

which travels along the shock, thereby increasing the size of the potential noise
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Figure 5.6: Pressure perturbations along radii extending from the vortex core at

z = 30. Radii are separated by 10 degree increments.

source with increasing time. Thus, the generation and spreading of sound in this

interaction is a comphcated process, indeed.

An interesting feature apparent in the pressure field resulting from the ring

vortex-shock interaction is apparent in the flow field downstream of the shock and

below the vortex filament. The ring vortex-shock interaction produces not only

the acoustic quadrupole, but also a cusp-shaped pressure wave which connects the

portion of the acoustic wave immediately below the vortex filament and the shock

wave. This feature was not found in columnar vortex-shock interaction studies

([7], [8], [9], [10], [11], and [12]), and appears to be sensitive to the introduction

of the initial condition. Because of computational cost, the vortex is introduced
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Figure 5.7: Pressure perturbations downstream of the shock at T = 50.
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seven core radii upstream of the shock for most of the calculations presented in this

paper. However, to test the effect of the initial distance between the vortex and the

shock wave, AZl, on the flow field downstream of the shock, a single calculation

is presented where the vortex is initially twenty-three core radii upstream of the

shock. Figure 5.9 shows the solution downstream of the shock at times T = 50

and T = 66 for initial shock locations of z = 7 and z = 23, respectively. In both of

these solutions the vortex has traveled approximately 23 core radii after its filament

has passed through the shock wave. The cylindrical portion of the pressure field is

similar for both initial conditions; however, there are differences in the downstream

flow-field. Most notably, the cusp-shaped pressure structure is much larger for the

longer time solution (Azl = 23), indicating that it originates at the beginning of

the computation. Further study of this feature is required to quantify the effect of

axisymmetry and the initial condition on its structure, and to determine whether

it is numerical or physical in nature.

5.3.3 Density

Figure 5.11 shows the change in density of the flow field. At time T = 0 the

only change in density is associated with the vortex. As the vortex core begins

to interact with the shock, density waves appear downstream of the shock. The

interesting character of the density waves becomes clear in the final figure of the

time sequence. Two types of density perturbations are evident in the figure. Den-

sity disturbances associated with the acoustic wave propagate in a nearly circular

pattern downstream of the shock. This is to be expected, because acoustic waves

are by definition isentropic and there is a clear relationship between the density

and pressure (s = constant. = _). In addition, there are also density disturbances
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Figure 5.9: Pressure contours downstream for a time T = 50 (left figure) and

T = 66 (right figure). The vortex is located at approximately twenty-three core

radii downstream of the shock for both cases. The difference in the solutions is a

result of the initial placement of the vortex relative to the shock. In the £gure on

the left, the vortex is initially seven core radii away from the shock. In the figure

on the right, the vortex is initially twenty three core radii away from the shock.
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of a convective nature. These density disturbances look like spokes reaching out

from the vortex core and terminating at the shock. These disturbances are asso-

ciated with the entropy waves associated with changes in the shock strength. As

the vortex interacts with the shock, the shock wave begins to move. As the shock

moves, the change in entropy across the shock is no longer constant, and an en-

tropy wave is generated which convects downstream at the local flow velocity. For

the counter clockwise rotating vortex, the portion of the shock above the vortex

filament initially moves upstream and the portion of the shock below the filament

moves downstream. As time increases, disturbances move away from the interac-

tion point, and their motion along the shock wave creates entropy perturbations

which convect downstream at the local flow velocity. These disturbances show a

strong resemblance to the features visualized by Naumann and Hermanns [3] in

their experiment and described as contact surfaces.

Figure 5.10 shows a digitized version of a Mach-Zehnder interferogram from [3]

which illustrates the sound wave and contact surface visualized in the experiment.

In the experiment, the interaction is produced as follows. A sharp edged profile is

placed in a shock tube. A diaphragm (located to the left of the airfoil) is broken and

a weak disturbance travels through the tube and over the trailing edge, producing

a starting vortex. Another diaphragm (located at the right of the airfoil ) is

broken and a shock wave travels towards the vortex. The results of the interaction

are shown in Figure 5.10. Because the interaction observed in this experiment is

strong, the motion of the shock wave is pronounced and the acoustic wavefront is

asymmetrical. The contact surfaces form a curved funnel-shaped structure between

the shock wave and the vortex.
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Figure 5.10: Mach-Zehnder interferogram of sound wave and contact surfaces gen-

erated shock-vortex interaction. (From [3])
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Figure 5.11: Contours of density perturbation downstream of the shock at

T = 0,T -- 8, and T = 50.

Figure 5.12 shows a carpet plot of the density at T = 50. The sound wave and

complex nature of the contact surfaces are clearly visible.

Experiments provide evidence for the physical nature of the contact surfaces

observed in these computations. However, earlier analysis in Chapter 3 demon-

strated that the computation of slowly moving shock waves produces error which

manifests itself primarily in entropy. Therefore, caution must be exercised in the

interpretation of the strensth of these disturbances. Further analysis is required

before the nature of these contact surfaces is validated.

5.3.4 Vorticity

Figure 5.13 shows the change in vorticity. At the initial time, the only vorticity is

a circular spike at the vortex core, so this contour plot is not shown. As the vortex

interacts with the shock at T = 8, vorticity appears downstream. At T = 50,

the character of the vorticity becomes clearer. The vorticity patterns, like the

convective density disturbances, look like the spokes of a wheel radiating from
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Figure 5.12: Contours of density perturbation downstream of the shock at T = 50.
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Figure 5.13: Contours of vorticity perturbation downstream of the shock at T = 8

and T -- 50.

the vortex core and terminating at the shock. Zooming in on a region in the

immediate vicinity of the vortex core at T --- 50 (Figure 5.14), it is clear that the

lines of constant vorticity are oblong in shape.

5.3.5 Velocity

Figures 5.15 and 5.17 show the changes in the axial and radial components of veloc-

ity. Except for small changes in amplitude, the velocity field shows no significant

variation as a result of the interaction on this scale. There are, however, very in-

teresting features similar to those observed in the density perturbations when the

contour range is decreased. Figure 5.16 shows the change in the axial component

of velocity on a smaller contour range. The vortex, acoustic wave, and entropy

disturbances are all readily distinguished on this scale.

5.3.6 Entropy

Figure 5.18 shows the change in entropy, defined as 68 -- 8o_ - so. At the

initial time, there is no fluctuation in entropy, since the initial vortex is isentropic.
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Figure 5.17: Contours of radial velocity perturbation downstream of the shock at

T -- 0, T = 8, and T -- 50.
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Therefore, the contour plot at T = 0 is not shown. However, as the vortex core

interacts with the shock wave, entropy appears downstream. Note that the entropy

perturbations correspond to the convective fluctuations in density and vorticity as

seen in Figures 5.11 and 5.13.

5.3.7 Discussion

Figures 5.4 through 5.18 illustrate interesting flow features which result from the

interaction of a ring vortex and a shock wave. After observing the perturbations

in the flow quantities, it is clear that an acoustic wave and contact surfaces result

from this interaction. The acoustic wave has the property that it is isentropic, and

travels at the sound speed relative to the moving fluid. The contact surfaces do not

support a pressure disturbance but do support differences in flow velocity, density s

entropy, and vorticity. The disturbances are the result of the interaction. What is

it about the interaction which creates these disturbances? From a mathematical

perspective, the shock wave is the feature which allows for the coupling of the

linear modes (acoustic, entropy, and vorticity). Crocco's Theorem provides the

relationship between the flow vorticity and entropy, and from this theorem it can be
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Figure 5.19: Shock displacement as a function of space-time.

shown that vorticity can be generated in the presence of a curved shock. Because

the evidence points to the importance of the shock wave in the generation of

the acoustic, vortical, and entropy disturbances, a closer observation of the shock

dynamics will be made in the next section.

5.3.8 Shock Dynamics

Figure 5.19 shows a space time diagram of the shock displacement. For times

T = 0 through T = 6 the shock position remains nearly fixed as the vortex convects

supersonically towards it. Once the vortex core begins to strongly interact with

the shock at T -- 6, the shock motion becomes significant. Figure 5.19 illustrates

the nature of the shock displacement as a function of time. A small disturbance on

the shock is initiated at T _ 6. The disturbance proceeds to travel both away from

and towards the axis of symmetry. The speeds of these waves is approximately the
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same in both directions, but the disturbance reaches a local maximum away from

the axis of symmetry, but continues to grow towards the axis of symmetry.

Figure 5.20 is included to clarify the details of the shock displacement at various

times. This figure shows the axial displacement of the shock as a function of radial

position along the shock for T = 1, T = 6, T = 10, T = 20, T = 30, T = 40,

and T = 50. At T = 10, the shock wave has maximum displacement magnitudes

of 0.1 and 0.14 in the upstream and downstream directions, respectively. At this

early time, the displacement of the shock is limited to a small region around r =

125, the radial position of the vortex filament. As time progresses, the maximum

shock displacement occurs farther away from the interaction point. The maximum

upstream displacement occurs at a time of T _ 10. However, the displacement

in the downstream direction continues to increase, even after 50 periods. If one

considers the motion of the maximum shock displacements along the shock wave, it

is apparent that these disturbances travel away from the vortex-shock interaction

point at a particular velocity. By careful examination of the results presented

in Figure 5.19, this velocity is found to be _ 0.54 core radii per period (which

corresponds to a normalized velocity of _ .68). This speed is well below both the

upstream and downstream sound speeds (1.0 and 1.15, respectively).

It is interesting that the shock wave displacement continues to increase in the

direction towards the center of the ring, while it maximizes and then decreases in

the direction away from the ring's axis of symmetry.

Figures 5.19 and 5.20 show the asymmetry in the shock position relative to

an axis passing through the vortex filament position at r = 125. The portion of

the shock closest to the axis of symmetry continues to move downstream over the
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Figure 5.20: Shock displacement as a function of radial distance (on the vertical

axis) for T = 1, T = 6, and T -=- 10 through T = 50 in time increments of 10.

Positive displacement refers to downstream shock displacement.
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time of the calculation. The maximum shock displacement is greater downstream

(Am, = 0.16) than upstream (A_s = -0.1).

Figure 5.9.1 shows the displacement of the shock and the perturbation in density

and pressure immediately downstream of the shock (at z = 7.02) at T = 50. This

figure shows that there is a correlation between the disturbances downstream of the

shock and the shock displacement. The shock displacement leads the disturbances

in pressure and density. The maximum and minimum of the shock displacement

correspond to the large jumps in density at r = 100 and r = 150. The changes in

slope of the 6z, vs r curve located at r = 70, r = 120, and r = 130 also correspond

to significant high frequency changes in density. This type of fluctuation in pressure

occurs only at r = 70. Thus, by comparing this figure with the contour plots of

Figures 5.4 and 5.11, the spoke-like disturbances in density and vorticity can be

related directly to the shock motion and curvature.

5.3.9 Frequency Analysis

In order to obtain information regarding the frequency content of the solution, the

Fourier transform is used to transform the time dependent information obtained

from the numerical calculation to the frequency domain:

OO
= (5.7)

where gp is the perturbation pressure defined as the difference between the pressure

and the mean pressure (6p = p - Po), and ,, is the cyclic frequency.

This integral is written in discrete form:



127

r

200

150

100

50

0 ! ! .................... , ! ..I. ! .............. = I i i ......

5x_ _p 8p

Figure 5.21: Shock displacement and density and pressure perturbations as func-

tions of radial distance (on the vertical axis) for T = 50. The density and pressure

perturbations are obtained sfightly downstream of the shock (z = 7.02).
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N-1

P at G p(nat)e (5.8)
n----0

where At is the discrete time interval of the discrete pressure time history, p(nAt),

N is the number of points in the time history. The summation Equation 5.8 is

computed using the Fast Fourier Transform (FFT) approach. In order to efficiently

use the FFT, N must be a power of 2.

In this numerical simulation, solutions were saved at every period (defined

previously as T = _1)' Thus, there are 50 discrete representations of pressure in

the time history available for analysis at each point in the computational domain.

In order to effectively use the FFT approach, the time history at each point at

which the spectrum is to be computed is padded with zeros so that the number

of discrete values in the time history is a power of two. Padding the time history

with zeros does not affect the highest frequency which can be resolved in a discrete

approximation to the Fourier transform (the so-called Nyquist frequency), since

the Nyquist frequency wc is a function only of the temporal increment in the time

= _ However, padding the time history with zeros does increase thehistory, wc _.

frequency resolution of the spectral estimate.

The increase in frequency resolution provided by zero padding is readily un-

derstood by an example [21]. Suppose the original time history T has b elements:

T(nAt), n = 0, 1,2,..b- 1. The original time history is then padded with an

additional b elements, which are zero: T(nAt) = 0, n = b, b + 1, ...2b- 1. The

discrete Fourier transform TT is then

= At 2b-ITT@k) E T(nAt)e -i2 k"/2b
2b-1

(5.9)=2-'_
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---- -- "R"_rk k 0, 1, 2, ...b, and the frequency resolution is Aw - AbA-_"Note that wk = _-A-_,

2_k k =Similarly, for the original time history without zero padding, wk - b&f,

O, 1,2,...b/2, and the frequency resolution is Aw - 2,r Thus, the zero paddingbA_"

has the effect of increasing the frequency resolution by a factor of two.

Although it would be sufficient to pad the 50 element time history with 14 zeros

to obtain a 64 element time history, each time series was padded with 206 zeros for

a total of 256 points in the time history. This provided better frequency resolution

necessary for localization of the acoustic energy in the spectrum. The price paid

for enhanced frequency resolution is a loss of accuracy. The reader is referred to

[21] for details.

Typical sound pressure levels are presented in Figures 5.22 and 5.23. The

frequencies on the horizontal axis are normalized by the upstream flow velocity

and core radius, to obtain a Strouhal number. In these figures, the effect of the

mean flow has been removed from the spectra by subtracting the time average of

the pressure from each point in the time history. This removes the energy from

the zero frequency bin. The sound pressure level is represented as decibels (dB),

per convention. The decibel level is obtained by computing:

P(w)[dB] = 20log(_) (5.10)

where Pre[ = 20#Pa is the conventional acoustic reference pressure.

Figures 5.22 through 5.24 show the sound pressure level at locations along a

45 degree line from the sound source point (z = 7, y = 125) at 6.08, 11.74 and

23.1 core radii away from the source point. The highest energy levels are in the

low frequency range (Strouhal numbers less than 0.1). There are additional peaks

at Strouhal numbers of ,_ 0.2, 0.4, 0.6. The energy in the frequency band of about
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0.22 becomes relatively more important than the low frequency energy as distance

from the source point is increased. By observation of the time history from which

the spectrum is computed, the period of the acoustic wave is determined to be

approximately 21 periods. This corresponds to a Strouhal number of _ - _ -
111 -- Tul --

_: 0.2. Thus: the in the frequency of 0.22 is associated withenergy ra_nge

the acoustic energy of the signal. The large peaks near the Nyquist frequency

(Strouhal No. = _") are probably due to aliasing.Hardin [20]has shown that

for spectralestimatesnear the Nyquist frequency,we, contributionsfrom -we can

appear, even for a sumciently sampled time history.Figure 5.25 shows the sound

pressurelevelofthe two frequencies0.025 and 0.2as a functionof distancefrom the

sound source point.The data are taken along a 45 degree linefrom the horizontal

passing through the vortex core at r = 125. The data shows a rapid decay in the

energy associatedwith the low frequency energy. The energy decays at about 6dB

per doubling ofdistance away from the source.This impfiesa _ decay rate,which

isconsistentwith the expected decay rate for a vorticalpressure field.

The energy at the Strouhal number of 0.22 decays at a lower rate ,._3dB per

1 Becausedoubling of distance, which implies a sound pressure level decay of _.

the sound pressure level is a function of the square of the pressure, this result

is consistent with the pressure decay rate of _1 observed in Section 5.3.2., and

implies cylindrical spreading of the acoustic energy.

5.3.10 Sound Intensity Level

The sound intensity is a vector quantity defined by:

lf0 f(_) = _ 17¢dt (5.11)
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Figure 5.22: Sound pressure level (SPL) pressure as a function of dimensionless

frequency. Distance from the source is 6.0811 core radii. Angle from horizontal is

45 degrees.
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Figure 5.23: Sound pressure level (SPL) as a function of dimensionless frequency.

Distance from the source is 11.74 core radii. Angle from horizontal is 45 degrees.
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Figure 5.24: Sound pressure level (SPL) as a function of dimensionless frequency.

Distance from the source is 23.1 core radii. Angle from horizontal is 45 degrees.
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Figure 5.25: Sound pressure level (SPL) as a function of distance from the inter-

action point. This data is taken along a line at 45 degrees from the point where

a horizontal line passing through the vortex filament (r=125) passes through the

undisturbed shock.
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where T is the period of a periodic disturbance or a sufficiently long time for

nonperiodic bounded signals, and if" is the instantaneous acoustic energy flux

vector:

where 6p, 6u, and _p are disturbances in pressure, velocity, and density, defined:

_p=p-po

6p = p - po

and the subscript 0 represents the mean flows state.

Note that in a quiescent medium (where/_0 = 0), three of the terms in the in-

stantaneous acoustic energy flux vector vanish, and the equation for sound intensity

reduces to:

1 fo TI_(_,) = _ 5p6gdt (5.12)

Because the early theoretical development of acoustics was developed for sound

disturbances in a quiescent state, this definition will be called the "classical" defi-

nition of sound intensity, and it will be labeled with a subscript c to distinguish it

from the definition of intensity presented in Equation 5.11. It will be shown later

that it can be beneficial to consider the classical definition of sound intensity, even

in the presence of mean flow.

In the calculations performed here, the acoustic signal is transient, which pro-

vides some difficulty in the interpretation of sound intensity. Because this is a

problem which models the periodic convection of turbulent disturbances through
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is not sound intensity, since most of the disturbances related to the vortex convect.

The high intensity level shown in this region demonstrates the high correlation

between the pressure and velocity disturbances in the vortex. (Some acoustical

energy may be generated as the vortex changes shape after its interaction with the

shock, but small scale vortical motions were not observed to be a significant sound

source in these calculations. This is most clearly seen in Figure 5.7 which shows a

carpet plot of pressure fluctuations downstream of the shock. The most significant

structure is the ring which has already been identified with the interaction of vortex

core with the shock wave. Much less significant pressure disturbances are seen in

the center of this acoustic wave, but there are no waves visibly emanating from the

vortex.)

The other region of high intensity is seen along the shock wave. The intensity

plots show that sound is directed primarily in directions closely aligned with the

shock wave, originating at the point of interaction and traveling both towards and

away from the axis of symmetry. Both axial and radial components of intensity

show high levels along the shock; the region is much narrower in the contour plot

of the axial component. The high amplitude of these waves makes it difficult to

classify them as acoustic in the classical sense, but because there is no convective

velocity in the radial direction, these disturbances are clearly not convective.

A plot of the axial component of sound intensity using the classical definition

is shown in Figure 5.27. (Because the mean flow is in the axial direction only,

the radial component of classical sound intensity is the same as that shown in

Figure 5.26.) The region of high intensity in the vicinity of r = 125 is due to

the passage of the vortex along this path. Figure 5.27 shows that the intensity
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Figure 5.26: Sound Intensity Level. Ir is radial component. Is is axialcomponent.

has four lobes not related to the convection of the vortex. Two of these lobes are

along the shock wave, similar to the results shown in Figure 5.26. However, two

additional lobes are seen in this figure. These lobes originate at the point of vortex

filament-shock interaction and point at angles of approximately 50 degrees and -55

degrees. The lobe directed at -55 degrees is narrower than the lobe directed at 50

degrees. It is interesting that these regions are not evident in the contours of the

full description of the sound intensity (Figure 5.26), because the energy associated

with the acoustics is overwhelmed by the contributions from the mean flow terms.

The high intensity level along the lobes is significant because it corresponds to the

location of the strongest region of the sound wave. (See Figure 5.6.) This indicates

that it can be beneficial to consider the classical definition of sound intensity, even

in the presence of a mean flow. It is legitimate to apply Equation 5.12 as long as
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Figure 5.27: Sound Intensity Level. Icz is the axial component of sound intensity

level using the classical definition of sound intensity. Note that in this definition,

the primary directivity of the sound wave is along the shock wave and downstream

at angles of approximately ±50 degrees.
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it is not used to draw conclusions about acoustic energy conservation.

5.3.11 Effect of Mach Number on Directivity

In order to determine the effect of Mach number on the directivity of the pressure

disturbances, a series of computations was performed where all flow parameters

were held fixed except the upstream Mach number. The pre-shock Mach numbers

studied were: M = 1.1, 1.3, 1.4, 1.5, and 1.7. These Mach numbers were chosen

because they are within the range of practical interest. The sound intensity level

was computed over this Mach number range. The directivity angles as a function

of shock strength are plotted in Figure 5.28. The figure shows the angles of the

four primary beaming directions. The change in lobe direction is most significant

for the lobes closely aligned along the shock. As the Mach number increases, these

lobe angles approach _90 degrees.

5.3.12 Effect of Flow Mach Number on Sound Pressure

Level

Because of the complexities in defining and computing the sound intensity level

for a transient signal in the presence of a mean flow, and because the human ear

responds to pressure fluctuations, a study of the effect of flow Mach number on

the sound pressure level is presented here. In this study, sound pressure level is

computed for a point in the acoustic far field (defined to be one wavelength away

from the source) at a distance of 23 core radii from the interaction point at an angle

of 0 = 50 degrees. In these calculations, the sound pressure level is computed by:

SPL=2OLog[Prm----2- " ]
[ Pref J

(5.13)
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Figure 5.28: Directivity Angles as a Function of Upstream Mach Number. The

upper curve corresponds to the intensity lobe closest to the shock above the vortex

filament; the second curve from the top corresponds to the intensity lobe to the far

right of the shock and above the filament; the third line from the top corresponds

to the intensity lobe to the far right of the shock and below the vortex filament

position, and the bottom curve corresponds to the intensity lobe closest to the

shock and below the vortex filament.
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whereprm8 = sqrt-_ffpdt, and where T is the period of the acoustic signal. Be-

cause this calculation is performed in the far field, the acoustic wave is readily dis-

tinguished from hydrodynamic disturbances. The result of this study is presented

in Figure 5.29 which shows sound pressure level as a function of f_ = _ - 1, for

Mach numbers in the range 1.1 < M < 1.5. In this figure, the solid line with small

dots represents the sound pressure level obtained from the time histories provided

by the ENO computations of the ring vortex - shock interaction. The large circles

are the experimental measurements obtained by Seiner and Norum [19] for shock

noise of an underexpanded supersonic jet, measured at a distance of 12 feet from

the jet centerline (approximately 146 jet radii from the source). The dashed line

shows the trend first observed by Harper-Bourne and Fisher [18] that the sound

pressure level of shock noise in imperfectly expanded supersonic jets is proportional

to f14 over a large range of flow Math numbers. The slope of the sound presure

level versus f_ curve very nearly matches the slope of the experimental results for

shock noise in supersonic jets. This is a significant result because it shows that this

simple model for shock noise generation cart predict the effect of Mach number on

shock noise observed in experiment.

Although this model correctly reproduces the trend in sound intensity level as

a function of shock strength, it does not reproduce the actual sound amplitude,

even when differences in the distance between the sound source and measurement

location are accounted for. This is not surprising since shock noise measured during

an experiment is the result of many interactions of turbulent structures of a variety

of sizes and strengths with a sequence of shock waves of decaying strength, and at

varying angles to the flow; this calculation is the result of only a single interaction.
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5.4 Strong Interaction

The results presented in this section are for the interaction of a strong vortex with

a shock wave. For all the results presented in this section, the upstream Mach

number is 1.5 and the strength of the vortex is 1_ = 5.5. Thus, this vortex is 7½

times stronger than the vortex studied in the previous sections. When the vortex

strength increases, the pressure disturbances generated downstream of the shock

increase in magnitude, as illustrated by Figure 5.30 which shows contour plots of

the pressure disturbances at T = 50. The actual range of the pressure disturbances

are on the order of 1, but, for the plot, the range of contours was chosen to be

from -.01 to .007 so that direct comparison with Figure 5.4 can be made. It is

interesting to compare the results of Figure 5.30 with Figure 5.4. In both figures,

a sound wave and a cusp-like pressure disturbance are apparent downstream of

the shock. However, the sound wave is much stronger in the strong vortex-shock

interaction case (Figure 5.30), and on this plot contour scale, additional pressure

structures are visible downstream and below the vortex filament.

Figure 5.31 shows pressure perturbation along radii extending from the vortex

center at 10 degree increments. This figure shows that the peak-to-peak pressure

amplitude is a maximum at 55 degrees and -55 degrees, as in the case for F = 0.75.

From this figure, the valley-to-peak measure of the wavelength is found to be _ 2.5.

By comparison with Figure 5.6, it is clear that the disturbances for the strong

vortex interaction case are almost an order of magnitude larger. For example, the

amplitude of the peak disturbance at 50 degrees is 10.2 times larger for the strong

interaction case (F = 5.5) than the weak interaction case (F = .75). Thus, the

acoustic pressure p scales as the vortex strength F.
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Figure 5.30: Contours of pressure perturbation downstream of the shock at T = 50.

Vortex rotation is in a counter-clockwise sense. Vortex strength is I' : 5.5.

It is interesting to note that the pressure disturbances immediately downstream

of the shock form very steep gradients. These gradients may be considered to be

shock waves, and have been referred to as "reflected shocks" [25]. Figure 5.32

shows the distribution of perturbation pressure as a function of distance from the

initial shock position at locations above and below the vortex filament. It is clear

that there are significant jumps in pressure downstream of the original shock wave,

especially below the vortex filament. The formation of steep gradients downstream

requires that the algorithm used in the calculation is robust.

Figure 5.33 shows contours of the density perturbations downstream of the

shock. The same types of features present in the I' = .75 case are present here 3

but the strength of these features is now enhanced.
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Dashed curve represents pressure perturbation along the line r = 98, below the vor-

tex filament. Solid curve represents pressure perturbation along the line r = 158,

above the vortex filament.
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Figure 5.33: Contours of density perturbation downstream of the shock at T = 50.

Vortex rotation is in a counter-clockwise sense. Vortex strength is P -- 5.5.
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Figure 5.34: Contours of pressure perturbation downstream of the shock at T = 50.

Vortex rotation is in a clockwise sense.

5.5 Typical Interaction-Clockwise Vortex

In this section, results are presented for the interaction of a clock-wise rotating

vortex with a shock. This case is not representative of the physics of the interaction

of vortices in the jet shear layer with shock waves, but is included for completeness.

This type of interaction could model wake flow- shock interaction, such as the wake

of a helicopter blade interacting with a shock on the subsequent blade.

Figure 5.34 shows contours of pressure for the case o{ vortex rotating in a

clockwise sense with a shock wave. The strength of the vortex in this case is

P = -0.75, and the Mach number upstream of the shock is M -- 1.5.

Note that this case is directly analogous to the case presented in Section 5.3,

except for the sign of the vortex circulation. Comparison of Figure 5.34 with Figure
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5.4 shows that the contours of pressure perturbation are quite similar, except that

the regions of compression (rarefaction) in Figure 5.34 are regions of rarefaction

(compression) in Figure 5.4. The difference in the rotation sense of the vortex re-

sults in a different response of the shock wave, which in turn results in a difference

in the sign of the pressure disturbance downstream. As shown in Figure 5.19, a

CCW rotating vortex causes the shock to move upstream in the region above the

vortex filament and downstream below the vortex filament. For the clockwise ro-

tation, the shock wave moves downstream above the vortex filament and upstream

below the vortex filament, as shown in 5.35. Figure 5.36 clearly shows that the

shock displacement is significantly greater upstream than downstream.

The downstream pressure disturbances restflting from the CW and CCW vor-

tices are not perfect images of each other about the vortex filament, the only

difference being the sign of the disturbance. Clearly, the cusp-structure described

in Section 5.3 connects the acoustic disturbance to a position on the shock near

the axis of symmetry in both cases.

There is also asymmetry of the acoustic disturbances. Figure 5.37 shows the

pressure perturbations along radii extending from the vortex core at ±40, ±50,

and +60 degrees. The dashed lines represent results from the CCW vortex and

the solid lines represent results from the clock-wise rotating vortex. For ease of

comparison, the results have been plotted such that the pressure disturbance asso-

ciated with the positive angle of the clockwise vortex is compared with the negative

angle of the CCW rotating vortex. The results show good agreement between the

pressure peak at the positive angle for the clockwise vortex and the negative angle

for the CCW vortex. However, there is a significant difference in the maximum
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Figure 5.35: Shock displacement as a function of space-time.

pressure amplitude of the disturbances which correspond to the clockwise vortex

at a negative angle and the CCW vortex at the positive angle. For these cases,

the clockwise rotating vortex generates a larger pressure disturbance. The largest

difference is seen to be 156 % for the sound disturbance traveling at ±60 degrees

from the horizontal.

5.6 Effect of Vortex Core Size

To show the effect of vortex core size relative to the vortex ring size, a study is

included in which the ratio of the core radius to ring radius is 2_--_"Figure 5.38 shows

the contours of change in pressure at T = 50 for this case. The range of pressure

levels in the contour plot is kept the same as in Figure 5.4 for direct comparison.

The strength and wavelength of the acoustic waves are essentially identical to
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Figure 5.36: Shock displacement as a function of radial distance (on the vertical

axis) for T = 1, T = 6, and T = 10 through T = 50 in increments of 10 for a

clock-wise rotating vortex, core at z = 30, y = 125. Results are shown for radii at

-t-40, =k50 and =k60 degrees. The solid lines represent solutions for the clock-wise

rotating vortex. The dashed lines represent solutions for the CCW rotating vortex.
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z = 30, y = 125. Results are shown for radii at =k40,-1-50 and =k60 degrees. The
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represent solutions for the CCW rotating vortex.
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Figure 5.38: Contours of pressure perturbation for a case where the strength of

the vortex is 1_ = 0.75, the Mach number upstream of the shock is M = 1.5, and

the ratio of the vortex core radius to the ring radius is 1250"

those in the case where the ratio of core radius to ring radius is 1. The primary

difference between the results is the fact that the cusp-like structure so apparent

in the results of Figure 5.4 is no longer visible on the contour plot. This indicates

that the presence of this wave may be related to axisymmetry. As the vortex ring

becomes larger relative to the core size, the resultant wave structures more closely

resemble those generated in a two-dimensional planar interaction which does not

show the cusp-like structure.
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In this chapter, the interaction of a ring vortex with a shock wave is presented as a

simple model for a mechanism responsible for generating shock noise in imperfectly

expanded supersonic jets. This model was inspired by the early works of Ribner [4]

[6] and Moore [5] who considered two dimensional interactions of disturbances with

shock waves in the context of hnear theory, but differs from these pioneering studies

because the interaction considered is axisymmetric, to more closely model the

interaction of axisymmetric turbulent structures within axisymmetric jets, and the

computational nature of the present study provides a tool for solving the nonlinear

equations governing the fluid dynamics of this very complex interaction.

An effort was made in the design of these calculations to model the physical

parameters of an imperfectly expanded jet. The size of the vortex core relative

to the vortex ring radius was small because of numerical considerations, so flow

parameters were chosen to model the interaction of a turbulent disturbance with

a shock wave in the first shock cell. The magnitude of the vortex strength and

the sense of the vortex rotation were chosen to be consistent with those observed

in experiments. The range of Mach numbers studied was within the range for

practical nozzles.

Observations of the evolution of perturbations in pressure, density, entropy,

vorticity, and velocity downstream of the shock wave during an interaction are

made. Observation of these flow quantities leads to the conclusion that sound,

entropy, and vorticity are generated downstream of the shock wave during the

interaction process. The sound wave is isentropic and propagates downstream at

the sum of the convection and sound speeds. Contact surfaces are formed during
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the interaction process. These disturbances do not support a difference in pressure,

but do support differences in density, entropy, and vorticity. Both sound waves

and contact surfaces have been observed in experimental studies of shock-vortex

interaction. It is believed that these are the first calculations performed with

enough resolution to show the presence of the contact surfaces downstream of the

shock for these flows. Contact surfaces have been observed in experiments, which

provides evidence for the physical nature of these disturbances, but, as discussed

in Chapter 3, numerical error associated with moving shock waves may readily

manifest itself in entropy, so further analysis is necessary in order to validate the

strength of the computed contact disturbances.

The structure of the contact surfaces is related to the shock dynamics. The

contact disturbances are observed to be generated by a wave which is initiated

during the interaction and travels along the shock both towards and away from

the center of the vortex ring. The motion of the shock corresponding to the wave

traveling along its length generates entropy and vorticity disturbances. Pressure

perturbations are also observed to originate at the locations of large shock motion.

Analysis of the data provides further insight into the physics of the interaction.

A frequency analysis suggests that the sound wave generated in these computations

decays as a cylindrical wave. This is due to the presence of the shock wave which

acts as a barrier to sound spreading upstream of the shock. An analysis of sound

intensity level provides insights into the directive nature of the sound wave. High

intensity levels are observed close to the shock wave and in downstream directions

at angles of approximately 50 and -55 degrees from a horizontal axis through the

vortex filament for the case where the upstream Mach number is 1.5.
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Additional studies of the interaction of a strong vortex with a shock wave

validated the robustnessof the numericalcodeusedin this work. The interaction

producedextremelyhigh gradientsin the flow downstreamof the shock,and the

computationmaintainedstability.

The soundgeneratedby clockwiseand counter-clockwiserotating vorticeswas

compared.It wasfoundthat the structureof thealternatingcompression-rarefaction

zonesalong the soundwavechangedsign when the senseof the vortex rotation

changed.(Regionsof compressionresulting from the clockwisevortex becamere-

gionsof rarefactionfor the counterclock-wisevortex, andviceverse.)It is alsoob-

servedthat the clockwisevortex generatesdisturbanceswhichcanbe significantly

larger in amplitude. The peakpressureperturbation resultingfrom theinteraction

of the clockwiserotating vortex with the shockproducespressurelevelsup to 156

% higher than the counter-clockwiserotating vortex.

A study of the effectof the ratio of coresizeto ring sizeis alsoperformed. This

study showsthat the effectsof axisymmetryare reducedwhenthe coreradiussize

is decreasedrelative to ring radius.

A study of the effectof flowMachnumberon the soundpressurelevelprovided

a significant result. It was found that the sound pressurelevel increasedwith

Mach number, and the rate of this increasecorrespondscloselyto that observed

in experimentaldataof shocknoiseof supersonicjets. This result implies that the

interaction of a vortex ring with a shockwaveis a dominant physical processin

shocknoisegenerationin supersonicjets.
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Chapter 6

Conclusions

This research shows that computational methods can predict shock-generated sound.

Although the direct computation of sound for realistic three-dimensional, time

dependent aerodynamic flow is currently limited by computer time and memory

constraints, if current advancements in computer hardware and software continue,

these hmitations will be removed in the near future. In the meantime, significant

insight can be gained into the physics of sound generation in comphcated flow fields

by modehng fundamental elements of these flow fields. Understanding the sound

generation is a first step towards the development of quieter aircraft, equipment

and hving spaces.

This research pioneers the apphcation of a direct computational approach to

the study of shock noise mechanisms. Direct simulation of sound generation in

shocked flows is challenging because of the disparity in amphtudes between the

acoustic waves and the shocks. These challenges are met by the implementation

of a high-order accurate Essentially Non-OsciUatory (ENO) scheme which uses

adaptive stencihng to maintain high-order accuracy in smooth regions of the flow

159
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to minimizenumerical dissipation of the acoustic waves while maintaining sufficient

numerical dissipation at the shock for stability. Numerical issues and methods

involved in the computation of flows with moving shocks are addressed at the

begining of this thesis to provide motivation for the selection of the numerical

scheme, the selection of the order-property of the scheme, and to provide a basis

for discussion of numerical error later in the paper. A study of the economics

of high-order schemes shows that the trade-off between the added cost of using

higher-order algorithms depends on the level of accuracy required. An analysis

performed for sound in a converging nozzle showed that for a numerical error on

the order of 10 -*, the third-order accurate ENO scheme is the most cost-effective,

Therefore, a third order ENO algorithm is used for most of the work presented here.

A study of the numerical error associated with the computation of slowly moving

shock waves shows that spurious numerical waves are produced downstream of the

shock. The numerical error manifests itself primarily in entropy, and is a function

of the algorithm used in the computation and the shock speed relative to the grid.

As the shock speed relative to the grid increases, the entropy error decreases.

This thesis presents and describes the modeling of sound generating mechanisms

in a supersonic jet. Experimental evidence is presented to illustrate that shock noise

contributes significantly to the sound field of a supersonic jet. Two mechanisms

of sound generation by shocked flows are investigated: shock motion and shock

deformation. These physical processes are modeled by the interaction of sound

disturbances with shock waves, and the interaction of vortical structures with shock

waves. These models are relevant to the understanding of shock noise because

they permit the consideration of shock oscillation and shock deformation in the
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development of sound.

Shock motion is modeled by the interaction of a sound wave with a shock.

Analysis of shock motion using Lighthill's equation shows that monopole, dipole,

and quadrupole terms all have potential to contribute to the far field sound. At low

supersonic Mach numbers, the monopole term dominates, followed by the dipole.

The dipole term is highly directional.

Shock motion is modeled numerically by the interaction of a sound wave with

a shock. During the interaction, the shock wave begins to move and the sound

pressure is amplified as the wave passes through the shock. Computations of

sound waves interacting with shocks in a converging diverging nozzle are performed.

The results show that the amplitude of the transmitted pressure perturbation is

greater than the incident pressure perturbation for all Mach numbers greater than

one. The numerical approach is validated by comparison of the computed ratio

of transmitted to incident sound pressures with linear theory. The comparison

is good over the range of shock Mach numbers studied (1.3 < M < 2.6). An

energy analysis is performed to determine if acoustic energy is generated in the

sound-shock interaction. The anMysis is based on an exact representation of the

transport of energy in an arbitrary flow field, and shows that acoustic energy is

indeed generated during the sound-shock interaction. The source term of this

energy is shown to be confined to a region along the shock wave in space-time,

and is a function of the changes in entropy, momentum, and temperature from the

mean flow state.

Shock deformation is investigated by the simulation of a ring vortex interacting

with a shock wave. This model has practical significance because it models the pas-
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sageof a turbulent structure through a shock wave. Observations of the evolution

of perturbations in pressure, density, entropy, vorticity and velocity downstream of

the shock lead to the conclusion that acoustic waves and contact surfaces are gen-

erated by the interaction. That these two types of fluid structures are generated by

the interaction is validated by experimental evidence. The structure of the contact

surfaces is related to the shock dynamics. The contact surfaces are observed to

be generated by disturbances which are initiated during the interaction and travel

along the shock both towards and away from the center of the vortex ring. The

motion and deformation of the shock generates entropy and vorticity, respectively.

Analysis of the numerical results demonstrates that the sound wave which re-

suits from the interaction of a vortex ring with a shock wave spreads cylindrically.

This is due primarily to the presence of the shock wave which acts as a barrier to

sound traveling upstream. Analysis of the sound intensity level over the region of

the computation provides insight into the directivity of the sound. High intensity

levels are seen along the shock wave and at angles of approximately 50 and -55 de-

grees from a horizontal axis through the vortex filament when the upstream Much

number is 1.5. The peak sound amplitude generated by a a clockwise rotating

vortex was found to be as much as 156 percent higher than sound generated by

the interaction of a counter-clockwise rotating vortex and shock wave. A signifi-

cant result of this work is that the sound pressure level is shown to increase with

shock strength. The relationship between the sound pressure level (SPL) and shock

strength, defined by the parameter fl = _- 1, is shown to be approximately

SPL ¢x f14. This is consistent with experimental observations of shock noise in

supersonic jets, and implies that the interaction of a vortex ring with a shock wave
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is a dominant physical process in the physics of shock noise generation.



Appendix A

Derivation of Unsteady Shock

Jump Relations

In this appendix, the shock jump relations for a moving shock are derived by using

generalized functions. The results obtained here for the continuity and momentum

equations are also provided in [1]. However, a derivation of the unsteady shock

jump relation for the energy is not provided in [1].

It is important to begin by introducing the concept of a generalized function.

Generalized functions will not be defined in a rigorous mathematical context here

(see [1] and its references for details), but will be presented to show the connection

between generalized and ordinary functions for clarity.

Conventionally, a function is defined as a table of ordered pairs (x, f(x)), where

for each x, f(x) is unique. This table may have an infinite number of ordered pairs.

In an analogous fashion, in generalized function theory, the function f(z) is defined

by its action on a given space of ordinary functions called test function space:
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Figure A.I: Schematic of a discontinuous surface.

FF[_] = f(x)dp(x)dx (A.1)
OO

where the function _(x) is a test function which must satisfy certain properties

given in [1]. The mapping described by Eqn. A.1 is called a functional. The

function f is now identified by the new table F[_], _ E test function space.

It can be shown that there are an infinite number of functions _ which satisfy the

conditions prescribed on the space of test functions, so the table produced by Eqn.

A.1 has an uncountably infinite number of elements. The space of test functions is

so large that the functionals on this space generated by Eqn. A.1 contain not only

ordinary functions, but additional functions. Thus, ordinary functions are a subset

of the generalized functions. It can be shown from classical Lebesque integration

theory that the Dirac delta function cannot be an ordinary function [1]. However,

functions such as the Dirac function are included in the definition of generalized

functions. Now that the concept of function space has been extended to include

functions such as the Dirac delta, the extension of the definition of derivative is

presented.
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Let f(z, V, z) be a piecewise smooth function with one surface of discontinuity.

Denote this surface by g = 0. Such a surface is illustrated in Figure A.1. At this

surface of discontinuity, there is a jump in the value of the function denoted by

_xf = l(g = o+) - f(g = o-) (A.2)

Note that g = 0 + is on the side of the surface into which XTg points and that,

following Farassat, Vg = ft.

The generalized divergence of a vector f, _'. _ is related to the ordinary diver-

gence, XT. f_ and the jump across the surface normal, A_ by:

,.f = v.f+vg.

= v. Af6(g) (A.3)

The shock jump relations for a flow in which a discontinuity in the flow is

moving may be derived by using the definition provided by Eqn. A.3, because

the differential forms of the laws governing the conservation of mass, momentum,

and energy are valid even when discontinuites exist within the region, as long

as the derivatives are interpreted as generalized derivatives. The apphcation of

generalized derivatives to the conservation laws is most readily performed when

the equations are in divergence form. Begin by considering the conservation of

mass.

Op
o-/+ *'" (p'_)= o

Applying the definition of the generalized derivative, Eqn. A.3,

(A.4)
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c3p Og
b_ + A[p]_/+ V. (7) + a[p_. _(g) = 0 (A.5)

The sum of the first and third terms define the ordinary continuity equation,

thus this sum is zero. The term _ is equal to the negative of the velocity of the

surface, - vn.

Thus,

A[p(u,_ -- v,_)] = 0 (A.6)

where un = g" _ is the component of velocity normal to the surface g, and vn is

the velocity of the surface. If the states upstream and downstream of a shock are

denoted by the subscripts of 1 and 2, respectively, and the shock is not moving,

note that Eqn. A.6 reduces to the familar Rankine-Hugoniot relation for steady

flows in one dimension: p2u2 = PlUl •

Consider now the conservation of momentum:

0----T- 0.j = 0 (A.7)

Applying the definition of generalized derivatives,

O(pui) + O(puiuj) + Op [o_.....7Ozj _ _tt Og Og ]+ _(PUi) + zxPu_sb-_j + _Pb-_ _(g) = 0 (A.8)

But, since _t = -vn and _ = hi, and noting that the sum of the first three

terms is equivalent to the well known momentum equation for continuous flows,

Eqn. A.8 reduces to:

A[puiCu, - v,) + r_i] : 0 (A.9)
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It is again comforting to note that when the shock is not moving, this equation

reduces to the familar Rankine-Hugoniot relation for steady, one-dimensional flow:

p2u 2 + P2 = PiU 2 + pi.

Consider now the energy equation:

9e _(e+ p)_ = 0 (A.i0)
O_ + Ozi

1 2
where e is the total energy: e = ph + _pu -p - pH- p. The total specific

enthalpy is represented by the symbol H. Applying the definition of the generalized

derivative,

Making the simphfications similar to those made for the continuity and mo-

mentum equations,

- _[e]_. + _[(e + P)_n]=0 (,.12)

1 1 _ .
_ a[p_ + }pu2_ p]_. + A[(ph+ :pu2)..] 0

2z
(A.13)

A[(ph+ _ip 2)(,. _ _.) + _.l = 0 (,.14)
2

For steady, one-dimensional flow, Eqn. A.14 reduces to the familiar Rankine-

1 2 1 2
Hugoniot relation: h2 + _p2u2 = hi + _plui.
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Appendix B

Equations for the Velocity and

Pressure of a Ring Vortex

For the purposes of prescribing the initial condition for the numerical calculation,

the vortex ring is assumed to be incompressible. The vortex moves relative to a

fixed coordinate system at a velocity equal to the sum of the mean flow velocity,

U, and the vortex translational velocity V. A cross-section of the vortex ring is

illustrated in Figure B.1. The equations for the velocity and pressure in the fluid

as a result of the presence of the vortex are derived for the purposes of prescribing

an initial condition for a numerical calculation.

B.1 Velocity

B.I.1 Outside the Core

Lamb [1] provides the expression for the stream function, ¢, of a vortex ring:

r_01/2[r 2 _ K)K(k)- KE(k)] (B._)
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U+V

_. ×r

Figure B.I: Ring vortex moving at a velocity U + V with respect to a fixed coor-

dinate system (x,r).

where F is the circulation, r is the distance from the axis of symmetry, K and E

are the complete elliptic integrals of the first and second kind,

K(m) = f0 {(1 - rosin 20)-½do (B.2)

and

E(m) = "(1 - rosin 2 O)_dO, (B.3)

and

k2 = 4fro
[(m - x0) 2 + (r + to) 2] (B.4)

where ro and mo are the radial and axial positions of the vortex filament, respec-

tively.
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Given the streamfunction, the axial and radial velocity components, u and v ,

respectively, can be found:

and

10¢ r (rg- (_- _0)2_ r2)
_= .... [g(k)+ E(k)] (8.5)

r 0r 27rr2 r 2

2

10¢ r (_- _°)rK'k)tt (_g+ (_- _°)2+ _ )E(k)] (8.6)_j -- __

r 0_ 2_r2 r_2 r_

where rl = x/(r - r0) 2 + (z - z0) 2 and r2 = x/(r + r0) 2 + (z - z0) 2.

In the numerical implementation of these equations for the vortex velocity, the

polynomial approximations to K(k) and E(k), which have an error bounded by

2 x 10 -s [2], are used.

B.1.2 Inside the Core

In order to avoid the mathematical singularity on the vortex filament and to better

model the physics of a real, viscous vortex, the velocity distribution inside the

vortex core is assumed to have a linear distribution of tangential velocity:

and

u=vosinB R (B.7)
Tc

v vecos (B.8)
rc

where ve is the tangential velocity at the core radius rc and R and/_ are the polar

coordinates centered on the vortex filament. The tangential velocity v 0 is known

by substituting (_ : _0 + rc,r = r0) into Eqn. B.6. Note that this description of

the core assumes that the core is circular. This is an approximation since the core

is elliptical in shape for finit values of _
_'0"
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Pressure

Outside the Core

The pressure field of this vortex is determined by momentum conservation. Con-

sider the momentum equation for an irrotational flow:

0g
- 1Vp = V_ + (B.9)p ?7

where p is pressure, q is the magnitude of the velocity vector, and g is the velocity

vector {u, v} T. Now, the velocity component in the axial direction is u = U+u,,(x-

_(t), r) where U is the mean flow velocity, u_ is the perturbation velocity induced

by the vortex, and the coordinate _ is fixed on the vortex filament position. The

radial component of velocity, v = vv(z - _(t), r), where vv is the velocity induced

by the vortex.

The flow is not steady in the fixed reference frame, because the position of

the vortex varies as a function of time: _ = x + (U + V)t, where V is the vortex

translational velocity. Evaluating the derivative 0u_-_ one obtains

ot o,,°t o(_- _(t))

o(_-_(t)) ot

= -o(_ - _)(u + v)

o,,o(u + v)
Ox

(B.10)

Similarly,

0__ OV(u+v )
Ot Or,

(B.11)
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Note that for irrotational flow, _-_.=_-7'0" o_, Therefore, _ = -_r so that

0g
c3---t= -Vu,,(U + V) (B.12)

If density is assumed to be constant, the momentum equation can be written:

v[ + -ff - (v + y),_] = 0 (8.13)

2 Substituting in for u, v, and evaluating thewhere q2 = u 2 + v 2 = (U + u_) 2 + v_,.

integral of Equation B.13 along a stream line which terminates in the mean flow

state where the velocity induced by the vortex is zero, one obtains

Po (u2
P- Po : --_, 7, + v_) + poVu, (B.14)

where the subscript 0 denotes the mean flow state.

B.2.2 Inside the Core

Equation B.14 is valid for the flow outside the vortex core, where the flow is

irrotational. To obtain the pressure field inside the vortex core where the flow is

rotational, consider the radial momentum equation:

pv_ .
dp = --_. (B.15)

/,

Substituting for v0 and integrating from the edge of the vortex core to r,

2

p(r) = P(rc)+ 2 rc2 - r_) (B.16)

assuming that p = po. The pressurep(rc),determined from Eqn. B.14 to ensure

continuity of pressure across the vortex core interface is:

,00 ,U2p(_c)= p0- T 0 (B.17)
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Figure B.2: Profile of the pressure distribution of a counter-clockwise rotating ring

vortex of strength F = 0.75. The figure to the right shows the pressure distribution

over a smaller range of pressure perturbation to highlight the asymmetry in the

pressure profile above and below the filament.

The pressure profile of a counterclockwise vortex of strength F = 0.75 is pro-

vided in Figure B.2. Note the asymmetry in the pressure field relative to the vortex

filament and the region of slightly positive pressure below the filament.

In the implementation of the vortex ring as an initial condition, the flow quan-

tites are normalized with respect to the upstream static pressure and density, and

the vortex core radius.

B.3 Remarks

Note that although the pressure and velocity are defined to be continuous at the

rim of the vortex core, the derivatives of these quantities are not. Because the

natural dissipation in the algorithm will automatically smooth these derivatives

at the rim, discontinuities in derivatives at the rim are not a problem with this

algorithm. Less robust schemes may have difficulty with this initial condition.
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